Erratum to “Archean greenstone–tonalite duality: Thermochemical mantle convection models or plate tectonics?”[Tectonophysics Volume 415 (2006) 141−165]

2006 ◽  
Vol 425 (1-4) ◽  
pp. 207-208 ◽  
Author(s):  
Robert Kerrich ◽  
Ali Polat
2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


2019 ◽  
Vol 5 (10) ◽  
pp. eaax4295 ◽  
Author(s):  
Nicolas Coltice ◽  
Laurent Husson ◽  
Claudio Faccenna ◽  
Maëlis Arnould

Does Earth’s mantle drive plates, or do plates drive mantle flow? This long-standing question may be ill posed, however, as both the lithosphere and mantle belong to a single self-organizing system. Alternatively, this question is better recast as follows: Does the dynamic balance between plates and mantle change over long-term tectonic reorganizations, and at what spatial wavelengths are those processes operating? A hurdle in answering this question is in designing dynamic models of mantle convection with realistic tectonic behavior evolving over supercontinent cycles. By devising these models, we find that slabs pull plates at rapid rates and tear continents apart, with keels of continents only slowing down their drift when they are not attached to a subducting plate. Our models show that the tectonic tessellation varies at a higher degree than mantle flow, which partly unlocks the conceptualization of plate tectonics and mantle convection as a unique, self-consistent system.


2021 ◽  
Author(s):  
Anna Gülcher ◽  
Laurent Montési ◽  
Taras Gerya ◽  
Jessica Munch

In the absence of global plate tectonics, mantle convection and plume-lithosphere interaction are the main drivers of surface deformation on Venus. Among documented tectonic structures, circular volcano-tectonic features known as coronae may be the clearest surface manifestations of mantle plumes and hold clues to the global Venusian tectonic regime. Yet, the exact processes underlying coronae formation and the reasons for their diverse morphologies remain controversial. Here, we use 3D thermomechanical numerical simulations of impingement of a thermal mantle plume upon the Venusian lithosphere to assess the origin and diversity of large Venusian coronae. The ability of the mantle plume to penetrate into the Venusian lithosphere results in four main outcomes: lithospheric dripping, short-lived subduction, embedded plume and plume underplating. During the first three scenarios, plume penetration and spreading induce crustal thickness variations that eventually lead to a final topographic isostasy-driven topographic inversion from circular trenches surrounding elevated interiors to raised rims surrounding inner depressions, as observed on many Venusian coronae. Different corona structures may represent not only different styles of plume-lithosphere interactions, but also different stages in evolution. A morphological analysis of large existing coronae leads to the conclusion that least 37 large coronae (including the largest Artemis corona) are active, providing evidence for widespread ongoing plume activity on Venus.


Sign in / Sign up

Export Citation Format

Share Document