Style of Alpine tectonic deformation in the Castellane fold-and-thrust belt (SW Alps, France): Insights from balanced cross-sections

2014 ◽  
Vol 633 ◽  
pp. 143-155 ◽  
Author(s):  
Anthony Jourdon ◽  
Yann Rolland ◽  
Carole Petit ◽  
Nicolas Bellahsen
2019 ◽  
pp. 675-697
Author(s):  
Matías C. Ghiglione ◽  
Gonzalo Ronda ◽  
Rodrigo J. Suárez ◽  
Inés Aramendía ◽  
Vanesa Barberón ◽  
...  

2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


2020 ◽  
pp. SP504-2020-70
Author(s):  
Rod Graham ◽  
James Pindell ◽  
Diego Villagómez ◽  
Roberto Molina-Garza ◽  
James Granath ◽  
...  

AbstractThe structural evolution of southern Mexico is described in the context of its plate tectonic evolution and illustrated by two restored crustal scale cross-sections through Cuicateco and the Veracruz Basin and a third across Chiapas. We interpret the Late Jurassic–Early Cretaceous opening of an oblique hyper-stretched intra-arc basin between the Cuicateco Belt and Oaxaca Block of southern Mexico where Lower Cretaceous deep-water sediments accumulated. These rocks, together with the hyper-stretched basement beneath them and the Oaxaca Block originally west of them, were thrust onto the Cretaceous platform of the Cuicateco region during a Late Cretaceous–Eocene orogenic event. The mylonitic complex of the Sierra de Juárez represents this hyper-stretched basement, perhaps itself an extensional allochthon. The Chiapas fold-and-thrust belt is mainly Neogene in age. Shallowing of the subduction angle of the Cocos Plate in the wake of the Chortis Block, suggested by seismicity and migrating arc volcanism, is thought to play an important role in the development of the Chiapas fold-and-thrust belt itself, helping to explain the structural dilemma of a vertical transcurrent plate boundary fault (the Tonalá Fault) at the back of an essentially dip-slip fold-and-thrust belt.


2011 ◽  
Vol 148 (5-6) ◽  
pp. 879-900 ◽  
Author(s):  
VINCENT TROCMÉ ◽  
EMILY ALBOUY ◽  
JEAN-PAUL CALLOT ◽  
JEAN LETOUZEY ◽  
NICOLAS ROLLAND ◽  
...  

Abstract3D modelling of geological structures is a key method to improve the understanding of the geological history of an area, and to serve as a drive for exploration. Geomodelling has been performed on a large 60000 km2 area of the Zagros fold-and-thrust belt of Iran, to reconcile a vast but heterogeneous dataset. Topography, geological surface data and dips, outcrop surveys, and well and seismic data were integrated into the model. The method was to construct a key surface maximizing the hard data constraints. The Oligo-Miocene Top Asmari layer was chosen, as this formation was regionally deposited before the main Zagros collision phase and because the numerous outcrops allow proper control of the bed geometry in the fold cores. Interpreted seismic data have been integrated to interpolate the surfaces at depth within the synclines. Several conceptual models of fold geometry have been applied to estimate the best way to convert seismic time signal to depth. Several deeper horizons down to Palaeozoic strata were deduced from this key horizon by applying palaeo-thickness maps. During the construction, the 3D interpolated surfaces could be reconverted to time, using a velocity model, and compared with previous seismic interpretations. This exercise obliged us to revise some early interpretations of seismic lines that were badly tied to wells. The 3D modelling therefore clearly improves regional interpretation. In addition, the 3D model is the only tool that allows drawing consistent cross-sections in areas where there are no seismic lines. Emerging Hormuz salt diapirs were added to the model. Dimensions and shapes of the individual diapirs were modelled using a statistical survey on the cropping out Hormuz structures. Modelling reliably demonstrated that the diapirs, when piercing, show a constant mushroom shape whose diameter depends on the stratigraphic depth of observation. This observation allowed us to exemplify relations between the pre-existing diapirs and the anticlines of the area, and to highlight the morphological changes from the inner onshore areas to the coastal and offshore areas. In addition, one of the surprising results of this study was the observation of the increasing diameter of the diapirs at the time of the Zagros collision and folding event, with growth strata and overhangs on the flanks of the diapirs.


2020 ◽  
Author(s):  
Marc Schori ◽  
Anna Sommaruga ◽  
Jon Mosar

<p>The Jura Mountains are a thin-skinned fold-and-thrust belt (FTB) in the northern foreland of the European Alps, extending over northern and western Switzerland and eastern France. The Jura FTB was detached in Triassic evaporites during Late Miocene and Pliocene compression. Prior to this, the pre-Mesozoic basement was intensely pre-structured by inherited faults that had been reactivated under changing stress fields during the Mesozoic and Cenozoic structural evolution of continental Europe. In order to understand the connection between thin-skinned FTB formation and pre-existing basement structures, we compiled boreholes and geological cross-sections across the Northern Alpine Foreland and derived elevation, thickness and erosion models of defined Mesozoic units and the top of the pre-Mesozoic basement.</p><p>Our models confirm the presence of basement faults concealed underneath the detached cover of the Jura Mountains. The pre-Mesozoic basement shows differences in structural altitudes resulting from partially overlapping lithospheric processes. They include graben formation during evolution of the European Cenozoic Rift System (ECRIS), flexural subsidence during Alpine forebulge development and lithospheric long-wavelength buckle folding. Faults in connection with these processes follow structural trends that suggest the reactivation of inherited Variscan and post-Variscan fault systems. We discuss the spatio-temporal imprint of lithospheric signatures on the pre-Mesozoic basement and their consequence on the formation of the Jura Mountains FTB. Untangling structures within the pre-Mesozoic basement leads us to a modern understanding of the long-term evolution of the detached Mesozoic cover. Furthermore, it allows us to improve the prediction of ages that are potentially preserved within the Mesozoic cover of the Jura FTB.</p>


2020 ◽  
Author(s):  
Tania Habel ◽  
Robin Lacassin ◽  
Martine Simoes ◽  
Daniel Carrizo

<p><span>The Andes are the case example of an active Cordilleran-type orogen. It is generally admitted that, in the Central Andes (~20°S), mountain-building started ~50-60 Myr ago, close to the subduction margin, and then propagated eastward. Though suggested by some early geological cross-sections, the structures sustaining the uplift of the western flank of the Altiplano have been largely dismissed, and the most common view theorizes that the Andes grow only by east-vergent deformation along its eastern margin. However, recent studies emphasize the significant contribution of the West Andean front to mountain-building and crustal thickening, in particular at the latitude of Santiago de Chile (~33.5°S). The contribution of similar structures elsewhere along the Andes to the kinematics of the orogen is still poorly solved, because not yet well synthesized nor quantified. Here, we focus on the western margin of the Altiplano at 20°S, in the Atacama desert of northern Chile. We focus our work on two sites where structures are well exposed. <br>Our results confirm two main structures: (1) a major west-vergent thrust placing Andean Paleozoic basement over Mesozoic strata, and (2) a west-vergent fold-and-thrust-belt involving Mesozoic units. Once restored, we calculate a minimum of ~4 km of shortening across the sole ~10 km-wide outcropping fold-and-thrust-belt. Further west, structures of this fold-and-thrust-belt are unconformably buried under slightly deformed Cenozoic units, as revealed from seismic profiles. By comparing the scale of these buried structures to those investigated previously, we propose that the whole fold-and-thrust-belt has most probably absorbed ~15-20 km of shortening, sometime between ~68 Ma (youngest folded Mesozoic layers) and ~29 Ma (oldest unconformable Cenozoic layer). Preliminary (U-Th)/He thermochronological data suggest that basement exhumation by thrusting happened at the beginning of this ~40 Ma time span. Minor shortening affecting the mid-late Cenozoic deposits indicates that deformation continued after 29 Ma along the western Andean fold-and-thrust-belt, but remained limited compared to the more intense deformation during the Paleogene. Altogether, the data presented here will provide a quantitative evaluation of the contribution of the western margin of the Altiplano plateau to mountain-building at this latitude.</span></p>


2016 ◽  
Vol 67 (4) ◽  
pp. 347-370 ◽  
Author(s):  
Jan Kuśmierek ◽  
Urszula Baran

Abstract The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.


Sign in / Sign up

Export Citation Format

Share Document