The deep structure of south-central Taiwan illuminated by seismic tomography and earthquake hypocenter data

2016 ◽  
Vol 679 ◽  
pp. 235-245 ◽  
Author(s):  
Giovanni Camanni ◽  
Joaquina Alvarez-Marron ◽  
Dennis Brown ◽  
Concepcion Ayala ◽  
Yih-Min Wu ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 630 ◽  
Author(s):  
Daniel Hölbling ◽  
Lorena Abad ◽  
Zahra Dabiri ◽  
Günther Prasicek ◽  
Tsai-Tsung Tsai ◽  
...  

Large rainfall-induced landslides are among the most dangerous natural hazards in Taiwan, posing a risk for people and infrastructure. Thus, better knowledge about the evolution of landslides and their impact on the downstream area is of high importance for disaster mitigation. The aim of this study is twofold: (1) to semi-automatically map the evolution of the Butangbunasi landslide in south-central Taiwan using satellite remote sensing data, and (2) to investigate the potential correlation between changes in landslide area and heavy rainfall during typhoon events. Landslide area, as well as temporary landslide-dammed lakes, were semi-automatically identified using object-based image analysis (OBIA), based on 20 Landsat images from 1984 to 2018. Hourly rainfall data from the Taiwan Central Weather Bureau (CWB) was complemented with rainfall data from Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) to examine the potential relationship between landslide area changes and rainfall as a triggering factor. The OBIA mapping results revealed that the most significant landslide extension happened after typhoon Morakot in 2009. We found a moderate positive relationship between the landslide area change and the duration of the heavy rainfall event, whereas daily precipitation, cumulative rainfall and mean intensity did not present strong significant correlations.


Tectonics ◽  
2017 ◽  
Vol 36 (7) ◽  
pp. 1275-1294 ◽  
Author(s):  
Dennis Brown ◽  
Joaquina Alvarez-Marron ◽  
Cristina Biete ◽  
Hao Kuo-Chen ◽  
Giovanni Camanni ◽  
...  

2019 ◽  
Vol 219 (1) ◽  
pp. 430-448
Author(s):  
Cristina Biete ◽  
Dennis Brown ◽  
Björn Lund ◽  
Joaquina Alvarez-Marron ◽  
Yih-Min Wu ◽  
...  

SUMMARY In this paper we test whether or not structural and morphological features inherited from the Eurasian continental margin are affecting the contemporary stress and strain fields in south-central Taiwan. Principal stress directions (σ1, σ2 and σ3) are estimated from the inversion of clustered earthquake focal mechanisms and the direction of the maximum compressive horizontal stress (SH) is calculated throughout the study area. From these data the most likely fault plane orientations and their kinematics are inferred. The results of the stress inversion are then discussed together with the directions of displacement, compressional strain rate and maximum shear strain rate derived from GPS data. These data show that there is a marked contrast in the direction of SH from north to south across the study area, with the direction of SH remaining roughly subparallel to the relative plate motion vector in the north, whereas in the south it rotates nearly 45° counter-clockwise. The direction of the horizontal maximum compression strain rate (εH) and associated maximum shear planes, together with the displacement field display an overall similar pattern between them, although undergoing a less marked rotation. We interpret the southward change in the SH, εH and the dextral maximum shear plane directions, together with that of the horizontal displacement field to be related to the reactivation of east–northeast striking faults inherited from the rifted Eurasian margin and to the shelf/slope break. Inherited faults in the basement are typically reactivated as strike-slip faults, whereas newly formed faults in the fold-and-thrust belt are commonly thrusts or oblique thrusts. Eastwards, the stress inversions and strain data show that the western flank of the Central Range is undergoing extension in the upper crust. SH in the Central Range is roughly parallel to the relative plate convergence vector, but in southwestern Taiwan it undergoes a marked counter-clockwise rotation westwards across the Chaochou fault. Farther north, however, there is no significant change across the Lishan fault. This north to south difference is likely due to different margin structures, although local topographic effects may also play a role.


2021 ◽  
pp. 228817
Author(s):  
Marianna Balasco ◽  
Francesco Cavalcante ◽  
Gerardo Romano ◽  
Vincenzo Serlenga ◽  
Agata Siniscalchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document