magnetic modelling
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Ying Liu ◽  
Tairong Zhu ◽  
Yunlai Liao ◽  
Jiaqi Li ◽  
Jun Dai

Abstract Miniaturization has increasingly become a crucial prerequisite in various magnetorheological (MR) drive application scenarios. Owing to their high controllability and low response time, MR rotary actuators are developed for numerous feasible actuation solutions. However, the incident low degradation efficiency in the miniaturization limits the application of MR rotary actuators. In addition to torque capacity, structural simplification and easy machinability are also essential for miniaturization. In this study, a novel lamellar excitation structure (LES), which is interleaved with induction coils and ring-shaped iron cores, is proposed to improve the comprehensive performance of a miniature MR rotary actuator. The optimisation of the magnetic field distribution is realised by adopting an equivalent magnetic modelling method. The miniature MR actuator is incorporated into a turbine generator to evaluate the torque capability of the proposed LES-incorporated MR actuator via a kinematic model of the rotating shaft. The LES-incorporated MR rotary actuator demonstrates more favourable deceleration efficiency and torque capacity than conventional MR rotary actuators. The speed reduction per unit power Δn/P can be increased by 500% at most. The torque enhancement ratio-to-volume ratio (TEVR) value of LES is approximately 80 times higher than that of other optimised structures. We believe that this study is significant in improving the comprehensive performance of miniature MR rotary actuators, expanding the applications of MR actuators in miniaturised scenarios.


2020 ◽  
Vol 22 (3) ◽  
pp. 13
Author(s):  
Akmal Dzulfikar ◽  
Anang Syahroni ◽  
Bachruddin Ashari ◽  
Diah Ayu R ◽  
Erwina Sofia Br Sembiring ◽  
...  

There is gravity measurement that is supported by magnetic measurement in Sangon to identify porphyry body and geological structure as low sulfidation epithermal system control. The survey area is 6.4 x 5.6 km for gravity method and 2.5 x 1.2 km for the magnetic method. The value of gravity anomaly after flat plane reduction processing is 122-142 mGal which is positive anomaly located in the north-eastern area and negative anomaly to 82- 102 mGal located in the south-western area. Whereas the magnetic residual anomaly is - 800-1300nT.Conducted 2.5 D modelling of gravity method that is based on local anomaly slice. The result of 2.5D modelling show that an intrusion body interpreted as Dacite intrusion as host rock which plays a role as a heat source of the mineralization system. The density of Dacite is 2.70 gr/cm3. The result of gravity modelling has a correlation with the result of magnetic modelling. Based on magnetic modelling, the intrusion body is located in the south-west.


2020 ◽  
Author(s):  
Itzel Isunza Manrique ◽  
David Caterina ◽  
Cornelia Inauen ◽  
Arnaud Watlet ◽  
Ben Dashwood ◽  
...  

<p>The sustainable vision of the Dynamic Landfill Management (DLM) deals not only with present but also with long-term waste management. In this context, DLM enhances the environmental assessment of landfills after closure as well as the recovery of materials and energy resources, for which, a proper characterization is required. To this end, geophysical methods have demonstrated their suitability for landfill exploration, characterization and monitoring. Due to the complexity of these sites and challenges in data acquisition and/or processing, the use of multiple methods is the best approach for landfill investigations. In this work, we used multiple geophysical methods, co-located with several trial pits and boreholes, to estimate the structure of a waste disposal site located in a quarry, and to better delineate the underlying geology composed of limestone. We applied electrical resistivity tomography (ERT), time-domain induced polarization (IP), H/V spectral ratio from microtremor records and magnetometry. We made a structural joint interpretation using the different datasets and the ground truth data. First, the ERT and IP data were individually inverted, and a first structural model was derived. Afterwards, we followed a parametric analysis of the H/V data to corroborate the thickness of some layers at the position of the seismic stations. Then, this model was used to compute synthetic magnetic data and by comparing them with the observed total field magnetic anomalies, a refined model was produced. We evaluated the improvement of including magnetic modelling by using a probabilistic approach previously reported. This approach is based on the computation of conditional probabilities by comparing the inverted models with the co-located data from trial pits and boreholes. Overall, we delineated the lateral and vertical extension of the waste body, the distribution of ash and lime deposits and estimated the upper limit structure of the bedrock.</p>


Author(s):  
Suvi Santa-aho ◽  
Arttu Laitinen ◽  
Aki Sorsa ◽  
Minnamari Vippola

Abstract This review looks at the main types of magnetic Barkhausen noise (BN) probes that have been developed. The aim of this review is to summarize the existing knowledge of magnetic Barkhausen noise probes and the magnetic modelling of them. The BN probes have been the focus of many previous studies, but no sufficient review or conclusions have been made so far. This review focuses on combining information regarding the different types of BN probes and their modelling. The review is divided into two sections; in the first part the different designs and types of Barkhausen noise probes are introduced. The second part of the review deals with the BN probe modelling with various modelling software. Finally, a comparison of the experimental measurements is made and BN sensitivity is discussed.


2019 ◽  
Vol 56 (5) ◽  
pp. 433-451
Author(s):  
Hernan Ugalde ◽  
William A. Morris ◽  
Cees van Staal

The Bathurst Mining Camp (BMC) is one of Canada’s oldest mining districts for volcanogenic massive sulphide (VMS) deposits. Most of the 46 known deposits were discovered in the 1950s using a combination of geological and geophysical methods. However, renewed exploration efforts over the past 15 years have not been as successful as one would expect given the level of expenditure of the camp. Nevertheless, this has created a large database of high resolution airborne geophysical data (magnetics, electromagnetics, radiometrics, and full tensor gravity gradiometry) which makes Bathurst a unique case. We show data compilation and map view interpretation, followed by two-and-a-half-dimensional (2.5D) gravity and magnetic modelling. From this, we provide constraints on the folded structure of the mafic and felsic volcanic units, and we interpret a large gravity anomaly in the southeast as a possible ophiolite or a dense thick package of basaltic rocks. Finally, we show an example of 3D modelling in the northwestern part of the camp, where we combine map view interpretation with section-based modelling and 3D geophysical inversion.


2019 ◽  
Vol 56 (5) ◽  
pp. 452-470
Author(s):  
Mike D. Thomas ◽  
Mark Pilkington ◽  
Mike McCuaig

An airborne gravity gradiometer survey was recently flown over the Iron Range Fault in the Purcell anticlinorium, southern Canadian Cordillera. The fault is commonly associated with iron oxide mineralization having characteristics similar to those of iron oxide Au ± Cu deposits. Drilling near the fault has revealed Au ± Cu–Pb–Zn mineralization. Prominent positive vertical gravity gradient (VGG) anomalies defined by the survey were identified as targets for follow-up exploration. Possible sources of the target anomalies were investigated by modelling gravity, VGG, and magnetic data along several profiles. Modelling of regional-scale profiles of the vertical component of gravity crossing exploration targets provides a regional perspective on the regional geological setting, dominated by the broad Goat River anticline, whose axis closely follows the Iron Range Fault. Modelling indicates that several VGG anomalies are related to Moyie sills, although one anomaly is modelled as a narrow vertical body (120 m wide, 1000 m vertical extent, 40 m deep) just west of the Iron Range Fault. Its apparent high density of 3500 kg/m3 suggests metallic content, making it a choice candidate for follow-up investigation. Drilling at the southern end of this geophysical target intersected a Moyie intrusion, but untested geochemical anomalies in the vicinity encourage follow-up exploration. The densities of modelled units derived from VGG profiles across two other specific targets indicate that Moyie sills represent one target and iron oxide mineralization the other, as supported by magnetic modelling, which also delineated vertical zones of significantly magnetic material along the Iron Range Fault.


Sign in / Sign up

Export Citation Format

Share Document