Analysing the C-Band spectrum auctions for 5G in Europe: Achieving efficiency and fair decisions in radio spectrum management

2021 ◽  
pp. 102286
Author(s):  
Agnieszka Kuś ◽  
Maria Massaro
2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Arturo Basaure ◽  
Heikki Kokkinen ◽  
Heikki Hämmäinen ◽  
V. Sridhar

Radio spectrum for commercial mobile services continues to be scarce. Countries around the world have recognized the importance of efficient utilization of this scarce resource and have initiated regulatory and policy steps towards flexible approaches to spectrum management, including sharing of licensed spectrum, and releasing unlicensed spectrum for mobile services. Technologies for shared access and the associated standardization activities have also progressed towards possible large scale deployments. In this paper, we analyze the evolution of spectrum management policies using a causal model and indicate how the markets can lock in to either centralized or flexible approach. We also cite a use case of a flexible spectrum management approach using spectrum band fill option and indicate its suitability to the Indian context.


1991 ◽  
Vol 112 ◽  
pp. 174-175
Author(s):  
R. Marcus Price

ABSTRACTIn the United States, civil common carrier telecommunications are provided by private companies, not by any agency of the government. Regulation of these services and spectrum management oversight is provided by the Federal Communications Commission (FCC), an agency of the government. Government telecommunications are operated by individual agencies, e.g. the Department of Defense, under the overall regulation of the Office of Spectrum Management of the National Telecommunications and Information Administration (NTIA), a government body separate from the FCC. In bands shared by the civil and government sectors, liaison and coordination is effected between the FCC and the NTIA.


Author(s):  
K. R. Damindra S. Bandara ◽  
Satish Kolli ◽  
Duminda Wijesekara

American Railroads are planning to complete implementing their Positive Train Control (PTC) systems by 2020. Safety objectives of PTC are to avoid inter-train collisions, train derailments and ensuring railroad worker safety. Under published specifications of I-ETMS (the PTC system developed by Class I freight railroads), the on-board PTC controller communicates with two networks; namely, the Signaling network and the Wayside Interface Unit network to gather navigational information such as the positions of other trains, the status of critical infrastructure (such as switches) and any hazardous conditions that may affect the train path. By design, PTC systems are predicated on having a reliable radio network operating in reserved radio spectrum, although the PTC system itself is designed to be a real-time fail safe distributed control systems. Secure Intelligent Radio for Trains (SIRT) is an intelligent radio that is customized to train operations with the aim of improving the reliability and security of the radio communication network. SIRT has two tiers. The upper tier has the Master Cognitive Engine (MCE) which communicates with other SIRT nodes to obtain signaling and wayside device information. To do so, the MCE communicates with cognitive engines at the lower tier of SIRT; namely the Cryptographic Cognitive Engine (CCE) (that provide cryptographic security and threat detection) and the Spectrum Management Cognitive Engine (SCE) (that uses spectrum monitoring, frequency hopping and adaptive modulation to ensure the reliability of the radio communication medium). We presented the architecture and the prototype development of the CCE in [1]. This paper presents the design of the MCE and the SCE. We are currently developing a prototype of the SCE and the MCE and testing the performance of our cognitive radio system under varying radio noise conditions. Our experiments show that SIRT dynamically switches modulation schemes in response to radio noise and switches channels in response to channel jamming.


2014 ◽  
Vol 945-949 ◽  
pp. 2301-2305
Author(s):  
Yi Peng ◽  
Yan Jun Wang

With the rapid development of wireless communication technology, the shortage of spectrum resources is becoming more and more serious, and may even become a bottleneck restricting of the development wireless communication technology in the future. Now, Spectrum sensing technology, spectrum sharing technology and spectrum management technology is the three core technologies of cognitive radio spectrum,and sensing technology is to implement the follow-up of spectrum sharing and the premise of spectrum management.So mainly to the current model of the cognitive radio spectrum sensing technology,to make a classification and comparison, finally it is concluded that cognitive users under the environment of higher signal-to-noise ratio, the better results of the perceived performance.


2009 ◽  
Vol 5 (S260) ◽  
pp. 457-464 ◽  
Author(s):  
W. van Driel

AbstractThe radio spectrum is a finite and increasingly precious resource for astronomical research, as well as for other spectrum users. Keeping the frequency bands used for radio astronomy as free as possible of unwanted Radio Frequency Interference (RFI) is crucial. The aim of spectrum management, one of the tools used towards achieving this goal, includes setting regulatory limits on RFI levels emitted by other spectrum users into the radio astronomy frequency bands. This involves discussions with regulatory bodies and other spectrum users at several levels – national, regional and worldwide. The global framework for spectrum management is set by the Radio Regulations of the International Telecommunication Union, which has defined that interference is detrimental to radio astronomy if it increases the uncertainty of a measurement by 10%. The Radio Regulations are revised every three to four years, a process in which four organisations representing the interests of the radio astronomical community in matters of spectrum management (IUCAF, CORF, CRAF and RAFCAP) participate actively. The current interests and activities of these four organisations range from preserving what has been achieved through regulatory measures, to looking far into the future of high frequency use and giant radio telescope use.


Sign in / Sign up

Export Citation Format

Share Document