Improving post-transfer survival of bovine embryos produced in vitro: Actions of insulin-like growth factor-1, colony stimulating factor-2 and hyaluronan

2011 ◽  
Vol 76 (9) ◽  
pp. 1602-1609 ◽  
Author(s):  
J. Block ◽  
P.J. Hansen ◽  
B. Loureiro ◽  
L. Bonilla
2014 ◽  
Vol 34 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Allison Ostriker ◽  
Henrick N. Horita ◽  
Joanna Poczobutt ◽  
Mary C.M. Weiser-Evans ◽  
Raphael A. Nemenoff

Objective— To define the contribution of vascular smooth muscle cell (SMC)–derived factors to macrophage phenotypic modulation in the setting of vascular injury. Approach and Results— By flow cytometry, macrophages (M4) were the predominant myeloid cell type recruited to wire-injured femoral arteries, in mouse, compared with neutrophils or eosinophils. Recruited macrophages from injured vessels exhibited a distinct expression profile relative to circulating mononuclear cells (peripheral blood monocytes; increased: interleukin-6, interleukin-10, interleukin-12b, CC chemokine receptor [CCR]3, CCR7, tumor necrosis factor-α, inducible nitric oxide synthase, arginase 1; decreased: interleukin-12a, matrix metalloproteinase [MMP]9). This phenotype was recapitulated in vitro by maturing rat bone marrow cells in the presence of macrophage-colony stimulating factor and 20% conditioned media from cultured rat SMC (sMφ) compared with maturation in macrophage-colony stimulating factor alone (M0). Recombinant transforming growth factor (TGF)-β1 recapitulated the effect of SMC conditioned media. Macrophage maturation studies performed in the presence of a pan-TGF-β neutralizing antibody, a TGF-β receptor inhibitor, or conditioned media from TGF-β–depleted SMCs confirmed that the SMC-derived factor responsible for macrophage activation was TGF-β. Finally, the effect of SMC-mediated macrophage activation on SMC biology was assessed. SMCs cocultured with sMφ exhibited increased rates of proliferation relative to SMCs cultured alone or with M0 macrophages. Conclusions— SMC-derived TGF-β modulates the phenotype of maturing macrophages in vitro, recapitulating the phenotype found in vascular lesions in vivo. SMC-modulated macrophages induce SMC activation to a greater extent than control macrophages.


2015 ◽  
Vol 27 (1) ◽  
pp. 133
Author(s):  
J. O. Carvalho ◽  
M. M. Franco ◽  
G. M. Machado ◽  
M. A. N. Dode

In mammals, a correct DNA methylation reprogramming and the maintenance of genomic imprinting after fertilization are essential for embryo development and pregnancy. One important imprinted gene, related to embryo development and placentation, is the insulin-like growth factor 2 (IGF2) gene. Therefore, embryos with different sizes could show differences in the methylation pattern of IGF2 gene. The aim of this study was to evaluate the methylation pattern of the differentially methylated region (DMR) located within exon 10 of the IGF2 gene, of in vitro-produced Nellore bovine embryos that were different in size on day D14 of development. The embryos were produced from oocytes obtained by follicular aspiration of slaughter house ovaries. On D7 after in vitro fertilization only grade I blastocysts were selected and, in groups of 10 embryos, were transferred non-surgically to the uteri of previously synchronized recipients with similar conditions. Seven days after being transferred, embryos were collected (Day 14 of development) and measured using Motic Images Plus 2.0 program (Motic, Richmond, BC, Canada). Embryos >45 mm were considered large (L) and those <25 mm were considered small (S). After being measured, a portion of each trophoblast layer was biopsied and used to determine the methylation status of the IGF2 gene by bisulfite sequencing. The methylation pattern was evaluated on individual embryos considered as separate replicates. At least 5 to 8 clones were evaluated per embryo and the sequences were analysed with the BiQAnalyser software (Max-Planck-Institut für Informatik, Saarbrücken, Germany), using the GenBank sequence NM_174087.3 as reference. The methylation pattern of the different groups was compared using Kruskal-Wallis test (P < 0.05). No differences in DNA methylation were found between S (26.7 ± 8.3%, n = 37 clones, 5 embryos) and L (34.8 ± 2.9%, n = 20 clones, 4 embryos) embryos. It is already known that the region studied is hypermethylated in sperm and hypomethylated in oocytes and, in some somatic cell types, it is expected to be around 50% methylated, being an imprinted region. Although we found a lower percentage of methylation than that expected for an imprinted region, this pattern may be the physiological pattern for trophoblast cells. This is the first report describing the methylation pattern of this region of the IGF2 gene in Day 14 bovine embryos of different sizes. It can be concluded that the methylation pattern of the intragenic DMR on exon 10 of IGF2 gene of in vitro-produced embryos on Day 14 of development is not affected by embryo size.This work was supported by CNPq, FAP-DF.


2004 ◽  
Vol 24 (8) ◽  
pp. 3238-3250 ◽  
Author(s):  
Jennifer Wessells ◽  
Shoshana Yakar ◽  
Peter F. Johnson

ABSTRACT One of the hallmarks of leukemic cells is their ability to proliferate and survive in the absence of exogenous growth factors (GFs). However, the molecular mechanisms used by myeloid tumor cells to escape apoptosis are not fully understood. Here we report that Myc/Raf-transformed macrophages require the transcription factor C/EBPβ to prevent cell death. In contrast to wild-type cells, C/EBPβ−/− macrophages were completely dependent on macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor for survival and displayed impaired tumorigenicity in vivo. Microarray analysis revealed that C/EBPβ-deficient cells expressed significantly reduced levels of the prosurvival factor insulin-like growth factor I (IGF-I). Overexpression of C/EBPβ stimulated transcription from the IGF-I promoter, indicating that IGF-I is a direct transcriptional target of C/EBPβ. Serological neutralization of IGF-I in C/EBPβ+/+ tumor cell cultures induced apoptosis, showing that IGF-I functions as an autocrine survival factor in these cells. Macrophage tumor cells derived from IGF-I−/− mice were GF dependent, similar to C/EBPβ-deficient cells. Forced expression of either C/EBPβ or IGF-I in C/EBPβ−/− bone marrow cells restored Myc/Raf-induced transformation and permitted neoplastic growth without exogenous GFs. Thus, our findings demonstrate that C/EBPβ is essential for oncogenic transformation of macrophages and functions at least in part by regulating expression of the survival factor IGF-I.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 5046-5054 ◽  
Author(s):  
Bárbara Loureiro ◽  
Luciano Bonilla ◽  
Jeremy Block ◽  
Justin M. Fear ◽  
Aline Q. S. Bonilla ◽  
...  

In this study, we tested the role of colony-stimulating factor 2 (CSF2) as one of the regulatory molecules that mediate maternal effects on embryonic development during the preimplantation period. Our objective was to verify effects of CSF2 on blastocyst yield, determine posttransfer survival, and evaluate properties of the blastocyst formed after CSF2 treatment. In vitro, CSF2 increased the percentage of oocytes that became morulae and blastocysts. Blastocysts that were treated with CSF2 tended to have a greater number of inner cell mass cells and had a higher ratio of inner cell mass to trophectoderm cells. There was no effect of CSF2 on the incidence of apoptosis. Treatment with CSF2 from d 5 to 7 after insemination increased embryonic survival as indicated by improved pregnancy rate at d 30–35 of gestation. Moreover, treatment with CSF2 from either d 1–7 or 5–7 after insemination reduced pregnancy loss after d 30–35. Results indicate that treatment with CSF2 can affect embryonic development and enhance embryo competence for posttransfer survival. The fact that treatment with CSF2 during such a narrow window of development altered embryonic function much later in pregnancy suggests that CSF2 may exert epigenetic effects on the developing embryo that result in persistent changes in function during the embryonic and fetal periods of development.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2313
Author(s):  
Alan D. Ealy ◽  
Savannah L. Speckhart ◽  
Lydia K. Wooldridge

The term “embryokine” has been used to denote molecules produced by the endometrium, oviduct, or by embryo itself that will influence embryo development. Several cytokines have been identified as embryokines in cattle and other mammals. This review will describe how these cytokines function as embryokines, with special emphasis being placed on their actions on in vitro produced (IVP) bovine embryos. Embryokines are being explored for their ability to overcome the poor development rates of IVP embryos and to limit post-transfer pregnancy retention efficiencies that exist in IVP embryos. This review will focus on describing two of the best-characterized cytokines, colony-stimulating factor 2 and interleukin 6, for their ability to modify bovine embryo quality and confirmation, promote normal fetal development, and generate healthy calves. Additional cytokines will also be discussed for their potential to serve as embryokines.


2004 ◽  
Vol 16 (2) ◽  
pp. 242
Author(s):  
P. Lonergan ◽  
D. Rizos ◽  
A. Gutierrez-Adan ◽  
P.M. Moreira ◽  
B. Pintado ◽  
...  

The objective of this study was to examine the time during the post-fertilization culture period that gene expression patterns of in vitro cultured bovine embryos diverge from those of their in vivo cultured counterparts. Presumptive bovine zygotes were produced by IVM/IVF of immature oocytes collected from the ovaries of slaughtered animals. At approximately 20h post-insemination (hpi), presumptive zygotes were randomly divided into two culture groups, either in vitro in synthetic oviduct fluid or in vivo, and transferred into the ewe oviduct. Embryos were recovered from both systems at approximately 30hpi (2-cell), two (4-cell), three (8-cell), four (16-cell), five (early morula), six (compact morula) or seven (blastocyst) days pi and snap-frozen for the analysis of transcript abundance using real-time PCR. The transcripts studied were interferon-tau, apoptosis regulator box-a (Bax), connexin 43, sarcosine oxidase, glucose transporter 5, mitochondrial Mn-superoxide dismutase, insulin-like growth factor II, and insulin-like growth factor-I receptor, most of which are known from our previous work to be differentially transcribed in blastocysts derived from culture in vitro or in vivo. Analysis was done on pools of 10 embryos. Data were analyzed using one-way repeated measures ANOVA. The relative abundance of the transcripts studied varied throughout the preimplantation period and was strongly influenced by the culture environment. For example, transcripts for interferon-tau were detected from the 8-cell stage onwards in in vitro-cultured embryos but not until the early morula stage in those cultured in vivo. Levels of this transcript increased significantly at the compact morula and blastocyst stages in both groups but were significantly higher (P&lt;0.05) in in vitro-cultured embryos at both stages. mRNA for Bax was not detected before the 8-cell stage in in vitro cultured embryos and not until the 16-cell stage in in vivo cultured embryos. The abundance of this transcript increased significantly thereafter up to the blastocyst stage in both groups. The level of expression was significantly higher (P&lt;0.05) at all stages of development in in vitro-cultured embryos than those cultured in vivo. The relative abundance of Cx43 transcripts decreased in both in vitro- and in vivo-cultured embryos at the 8- to 16-cell stage. Levels remained low thereafter in the in vitro-cultured embryos but significantly increased in those cultured in vivo. Transcript abundance was significantly higher in in vivo cultured embryos from Day 4 onwards with a ten-fold difference presence at the blastocyst stage. Differences also existed for the other transcripts studied. These data demonstrate that changes in transcript abundance in blastocyst stage embryos are in many cases a consequence of perturbed transcription earlier in development. Depending on the transcript, these differences may be evident in as short as 10h of culture.


Sign in / Sign up

Export Citation Format

Share Document