In vitro production of haploid germ cells from murine spermatogonial stem cells using a two-dimensional cell culture system#

Author(s):  
Fahar Ibtisham ◽  
Yi Zhao ◽  
Aamir Nawab ◽  
Jiang Wu ◽  
Xiao Mei ◽  
...  
2014 ◽  
Vol 38 (6) ◽  
pp. 782-789 ◽  
Author(s):  
Iraj Ragerdi Kashani ◽  
Amir Hassan Zarnani ◽  
Masoud Soleimani ◽  
Mir Abbas Abdolvahabi ◽  
Karim Nayernia ◽  
...  

2015 ◽  
Vol 205 ◽  
pp. 93-100 ◽  
Author(s):  
Jong Bong Lee ◽  
Sung Hwa Son ◽  
Min Chul Park ◽  
Tae Hwan Kim ◽  
Min Gi Kim ◽  
...  

2020 ◽  
Vol 6 (10) ◽  
pp. 5823-5832
Author(s):  
Mina Vardiani ◽  
Marefat Ghaffari Novin ◽  
Morteza Koruji ◽  
Hamid Nazarian ◽  
Ellen Goossens ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaowen Wu ◽  
Junxiang Su ◽  
Jizhen Wei ◽  
Nan Jiang ◽  
Xuejun Ge

Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.


2020 ◽  
Vol 45 (5) ◽  
pp. 631-637
Author(s):  
Cansu Ozel-Tasci ◽  
Gozde Pilatin ◽  
Ozgur Edeer ◽  
Sukru Gulec

AbstractBackgroundFunctional foods can help prevent metabolic diseases, and it is essential to evaluate functional characteristics of foods through in vitro and in vivo experimental approaches.ObjectiveWe aimed to use the bicameral cell culture system combined with the in vitro digestion to evaluate glucose bioavailability.Materials and methodsCake, almond paste, and pudding were modified by adding fiber and replacing sugar with sweeteners and polyols. Digestion process was modeled in test tubes. Rat enterocyte cells (IEC-6) were grown in a bicameral cell culture system to mimic the physiological characteristics of the human intestine. The glucose bioaccessibility and cellular glucose efflux were measured by glucose oxidase assay.Results and discussionThe glucose bioaccessibilities of modified foods were significantly lower (cake: 2.6 fold, almond paste: 9.2 fold, pudding 2.8 fold) than the controls. Cellular glucose effluxes also decreased in the modified cake, almond paste, and pudding by 2.2, 4, and 2 fold respectively compared to their controls.ConclusionOur results suggest that combining in vitro enzymatic digestion with cell culture studies can be a practical way to test in vitro glucose bioaccessibility and bioavailability in functional food development.


Sign in / Sign up

Export Citation Format

Share Document