Dextran sulfate included in factor Xa assay reagent overestimates heparin activity in patients after heparin reversal by protamine

2003 ◽  
Vol 111 (4-5) ◽  
pp. 273-279 ◽  
Author(s):  
Christine Mouton ◽  
Joachim Calderon ◽  
Gérard Janvier ◽  
Marie-Christine Vergnes
2020 ◽  
pp. 96-104
Author(s):  
E. V. Titaeva ◽  
A. B. Dobrovolsky

Introduction. The direct oral anticoagulants (DOC) therapy does not require alaboratory control; however, it may be required to determine the anticoagulationlevel to choose a treatment strategy if alarge bleeding is developing or emergency surgery is needed.The objective of this experimental study was to investigate the relationship between the residual factor Xa (FXa) activity, anti-Xa activity units oflow molecular weight heparins (LMWH), and the apixaban and rivaroxaban plasma concentrations in a chromogenic anti-Xa assay.Material and methods. Concentrated DOC solutions were prepared by extracting apixaban and rivaroxaban from crushed tablets using methanol and dimethyl sulfoxide, respectively. The resulting solutions were added to the donor plasma pool until final inhibitor concentrations are achieved in the range from 10 to 100 ng/ml plasma. Anti-Xa activity was determined using an STA-compact analyser and the Liquid anti-Xa reagent kit, an analysis protocol, and calibrators designed to control the LMWH therapy. The effect on the thrombin formation dynamics was investigated using the thrombin generation test (TGT) and the PPR reagent as a trigger (final concentrations of tissue factor are 5 pM, and those of phospholipids are 4 μM). TGT curves were analysed using the Thrombinoscope program.Results. It was shown that in the anti-Xa activity test version designed to control the LMWH therapy, there is a high correlation (R2 > 0.98) between thelogarithm of the residual factor Xa activity and the content of apixaban and rivaroxaban in the range from 10 to 80 ng/ml. Rivaroxaban shows about 1.5 times more anti-Xa activity than apixaban at equal concentrations. It was also shown that apixaban and rivaroxaban at doses equal both in concentration and in anti-Xa activity differ in their effect on the thrombin formation dynamics and thrombin inactivation in the TGT.Conclusion. In the LMWH anti-Xa activity test version, the measured range of apixaban and rivaroxaban includes 30 ng/ml and 50 ng/ ml concentrations taken as “cut-off points” to determine the treatment tactics in emergency cases. However, thelack of certified DOC calibratorslimits the use of this test in clinical practice.


2010 ◽  
Vol 23 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Amy Fann Rosenberg ◽  
Marc Zumberg ◽  
Lisa Taylor ◽  
Aimée LeClaire ◽  
Neil Harris

Continuous infusion unfractionated heparin (UH) has traditionally been monitored using the activated partial thromboplastin time (aPTT). The use of this test to monitor heparin therapy is not based on randomized controlled clinical trials, and the test is associated with significant intra- and inter-patient variability that is not related to circulating blood heparin activity. Due to these and other limitations, the use of aPTT alone to monitor UF has been questioned. Many laboratories are now transitioning to monitoring actual heparin activity (by anti-factor Xa analysis). In this review, we discuss the limitations of using the aPTT to monitor UH therapy and additionally the limitations of solely using heparin activity to monitor therapy. We also include a discussion of the challenges with monitoring heparin therapy in the pediatric population.


1977 ◽  
Author(s):  
R. Michalski ◽  
D.A. Lane ◽  
D. Pepper ◽  
V.V. Kakkar

The ability of PF4 and protamine sulphate to neutralise heparin in plasma has been studied using a specific anti-Factor Xa assay and a KCCT assay to measure residual heparin. When heparin is added to plasma in vitro PF4 and protamine neutralise almost equivalent amounts of heparin on a weight basis, 1.0 unit of heparin being neutralised by approximately 20 μg of PF4 and 15 μg of protamine. Similar results are obtained using either of the heparin assays. However, following intravenous injection of heparin only about one half of the circulating heparin could be neutralised in vitro by PF4 or protamine when it was measured by anti-Factor Xa assay. Total neutralisation was obtained with both neutralising agents in the KCCT assay system. These results demonstrate that the choice of assay is important when a protamine titration is used to measure plasma heparin levels, and that PF4 and protamine are unable to totally neutralise circulating antithrombotic heparin activity.


1994 ◽  
Vol 72 (03) ◽  
pp. 397-402 ◽  
Author(s):  
Peter A Kr von dem Borne ◽  
Stefan J Koppelman ◽  
Bonno N Bouma ◽  
Joost C M Meijers

SummaryA deficiency of one of the proteins of the contact system of blood coagulation does not result in a bleeding disorder. For this reason activation of blood coagulation via this system is believed to be an in vitro artefact. However, patients deficient in factor XI do suffer from variable bleeding abnormalities. Recently, an alternative pathway for factor XI activation has been described. Factor XI was found to be activated by thrombin in the presence of dextran sulfate as a surface. However, high molecular weight kininogen (HK), to which factor XI is bound in plasma, and fibrinogen were shown to block this activation suggesting it to be an in vitro phenomenon. We investigated the thrombin-mediated factor XI activation using an amplified detection system consisting of factors IX, VIII and X, which was shown to be very sensitive for factor XIa activity. This assay is approximately 4 to 5 orders of magnitude more sensitive than the normal factor XIa activity assay using a chromogenic substrate. With this assay we found that factor XI activation by thrombin could take place in the absence of dextran sulfate. The initial activation rate was approximately 0.3 pM/min (using 25 nM factor XI and 10 nM thrombin). The presence of dextran sulfate enhanced this rate about 8500-fold. A very rapid and complete factor X activation was observed in the presence of dextran sulfate. Although only minute amounts of factor XIa were formed in the absence of dextran sulfate, significant activation of factor X was detected in the amplification assay within a few minutes. HK inhibited the activation of factor XI by thrombin strongly in the presence, yet only slightly in the absence of dextran sulfate (26 and 1.2 times, respectively). Despite the strong inhibition of HK on the activation of factor XI by thrombin in the presence of dextran sulfate, HK had only a minor effect on the factor Xa generation.We conclude that activation of factor XI by thrombin can take place regardless of the presence of a surface or HK. This activation might therefore be physiologically relevant. The inhibitory effect of HK on the thrombin-mediated factor XI activation is largely dextran sulfate dependent. Due to the amplification in the intrinsic system, trace amounts of factor XIa might generate physiological sufficient amounts of factor Xa for an adequate haemostatic response.


1987 ◽  
Vol 33 (9) ◽  
pp. 1630-1634 ◽  
Author(s):  
J F Pierson-Perry ◽  
D M Obzansky ◽  
J P Mizzer

Abstract We describe a fully automated assay for determining effective heparin activity in plasma, based on heparin-catalyzed inhibition of Factor Xa (EC 3.4.21.6) by antithrombin III (AT III). Residual Factor Xa is determined kinetically by the Du Pont aca discrete clinical analyzer with a chromogenic substrate and is inversely related to heparin activity. Because the test plasma is the sole source of AT III, the assay result is dependent on AT III activity and reflects effective rather than total heparin activity. The assay range is 20-1200 USP units/L, and the assay shows equivalent sensitivity to standard and low-molecular-mass heparins. Within-run reproducibility (CV) is 1.6% at 390 units/L. There was no interference from common blood components or drugs. Results agreed well with those by the Coatest heparin kit (Kabi) adapted to the Cobas-Bio analyzer (r = 0.85, n = 122).


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1034-1034
Author(s):  
Martine Marie Fiore ◽  
Ian J Mackie

Abstract Platelet Factor 4 (PF4) is a cationic molecule that binds to heparin with high affinity and neutralises the activity of the latter. Our recent studies indicate that heparin can promote an interaction of fXa with PF4 since neutralization of heparin activity by PF4 was dependent on the concentration of protease. To examine the contribution of PF4 in protease function, fXa activity was determined in chromogenic assays. Upon preincubation with fXa and heparin, PF4 (at a concentration of 100 nM) decreased the kcat of S2765 peptide hydrolysis 4-fold and that of prothrombin activation about 2-fold. These results suggested an effect of PF4 on the primary specificity of the protease. In fact, PF4 exerted a mild effect (30 % decrease) on the Na+ dependence of fXa, consistent with linkage between Na+ and S1. PF4 preincubation with fXa also prevented the binding of the S1 probe p-aminobenzamidine (pAB) while simultaneous addition of PF4 and pAB diminished the contribution of PF4. In the presence of excess fVa (relative to fXa), kinetic parameters measuring fXa amidolytic activity in the presence of PF4 were restored to control values in the absence of PF4. Interestingly, high concentrations of PF4 (> 1 μM) totally restored fXa activity toward peptidyl substrate and strongly enhanced prothrombin activation, indicating a dual effect of PF4 on fXa activities. The inhibitory contribution of PF4 during prothrombin activation was due to a three-fold decreased affinity of fXa for fVa while enhancement of prothrombin activation was accompanied by a three-fold increase in fVa-dependent cofactor activity. Thus, the effects of PF4 possibly involved a region of the heparin/fVabinding exosite that is linked to the S1 and Na+ sites. These findings suggest that PF4 is a probe of fVa-dependent changes occurring in the active site of fXa and provide an explanation for the in vivo paradoxical effects of PF4 reported in the literature.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1724-1724
Author(s):  
Simon J. McRae ◽  
Alan R. Stafford ◽  
James C. Fredenburgh ◽  
Jeffrey I. Weitz

Abstract Previous studies have demonstrated that protein C (PC) can be activated by factor Xa (fXa) in a reaction that requires Ca2+ and negatively-charged phospholipid. Sulfated polysaccharides, such as heparin or dextran sulfate, have been shown to accelerate this reaction, although their mechanism of action remains elusive. To further explore this phenomenon, we first examined the effect of glycosaminoglycans of varying degrees of sulfation on the kinetics of PC activation by fXa in the presence of Ca2+ and phosphatidylcholine-phosphatidylserine vesicles (75%/25% w/w). Heparin increased the rate PC activation in a concentration-dependent and saturable fashion producing a 4-fold increase in catalytic efficiency (kcat/Km of 105 M−1 min−1) by reducing the Km for the reaction. In contrast N-desulfated heparin had no effect on the rate of this reaction, whereas dextran sulfate, which is more sulfated than heparin, increased the catalytic efficiency 21-fold. These data suggest that the capacity of glycosaminoglycans to catalyze PC activation by fXa is dependent on their degree of sulfation. The extent of sulfation is more important than chain length because hypersulfated low-molecular-weight heparin (HSLMWH) and dextran sulfate, both of which have a mean molecular weight of 5000, increased the catalytic efficiency 16- and 21-fold respectively. In contrast, enoxaparin, which also has a mean molecular weight of about 5000, had little effect. The capacity of heparin to enhance PC activation by fXa is similar in the presence of factor Va as it is in its absence, suggesting that heparin can accelerate this reaction even when fXa is incorporated within the prothrombinase complex. To begin to explore the mechanism by which these glycosaminoglycans enhance PC activation by fXa, we measured their affinities for PC and fXa, both of which have heparin-binding domains, in the presence of Ca2+. This was performed by monitoring changes in extrinsic fluorescence of fluorescein-labeled fXa or PC after addition of glycosaminoglycan. Heparin binds PC with similar affinity in the absence or presence of negatively-charged phospholipid (Kd values of 1.9 and 1.0 mM, respectively). In contrast, heparin binds fXa with 86-fold higher affinity in the presence of phospholipid vesicles than in its absence (Kd values of.007 and 0.61 mM, respectively). These findings suggest that fXa binding to phospholipid exposes a high-affinity heparin-binding site. In the absence of phospholipid, more sulfated glycosaminoglycans (dextran sulfate and HSLMWH) bind fXa with 2- to 3-fold higher affinity than heparin. These compounds exhibit a smaller increase in affinity for PC. These observations suggest that the capacity of glycosaminoglycans to enhance PC activation is dependent on the extent of sulfation, a feature that determines their affinity for fXa. How glycosaminoglycan binding to fXa modulates this reaction is uncertain, but it is more likely to reflect conformational changes in the enzyme than bridging of the enzyme to the substrate.


Sign in / Sign up

Export Citation Format

Share Document