Tumor-intrinsic and immune modulatory roles of receptor-interacting protein kinases

Author(s):  
A. Justin Rucker ◽  
Francis Ka-Ming Chan
2021 ◽  
Vol 12 ◽  
Author(s):  
Luyao Huang ◽  
Zhuangzhuang Li ◽  
Qingxia Fu ◽  
Conglian Liang ◽  
Zhenhua Liu ◽  
...  

In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). CBL-CIPK gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. To gain insight into the functional divergence of CBL-CIPK genes in honeysuckle, a total of six LjCBL and 17 LjCIPK genes were identified. The phylogenetic analysis along with the gene structure analysis divided both CBL and CBL-interacting protein kinase genes into four subgroups and validated by the distribution of conserved protein motifs. The 3-D structure prediction of proteins shown that most LjCBLs shared the same Protein Data Bank hit 1uhnA and most LjCIPKs shared the 6c9Da. Analysis of cis-acting elements and gene ontology implied that both LjCBL and LjCIPK genes could be involved in hormone signal responsiveness and stress adaptation. Protein-protein interaction prediction suggested that LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and SOS1/NHX1. Gene expression analysis in response to salinity stress revealed that LjCBL2/4, LjCIPK1/15/17 under all treatments gradually increased over time until peak expression at 72 h. These results demonstrated the conservation of salt overly sensitive pathway genes in honeysuckle and a model of Ca2+-LjCBL4/LjSOS3-LjCIPK16/LjSOS2 module-mediated salt stress signaling in honeysuckle is proposed. This study provides insight into the characteristics of the CBL-CIPK gene families involved in honeysuckle salt stress responses, which could serve as a foundation for gene transformation technology, to obtain highly salt-tolerant medicinal plants in the context of the global reduction of cultivated land.


1998 ◽  
Vol 273 (40) ◽  
pp. 25875-25879 ◽  
Author(s):  
Young Ho Kim ◽  
Cheol Yong Choi ◽  
Seung-Jae Lee ◽  
Mary Anne Conti ◽  
Yongsok Kim

2005 ◽  
Vol 389 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Claire E. EYERS ◽  
Helen McNEILL ◽  
Axel KNEBEL ◽  
Nick MORRICE ◽  
Simon J. C. ARTHUR ◽  
...  

A protein expressed in immune cells and muscle was detected in muscle extracts as a substrate for several SAPKs (stress-activated protein kinases). It interacted specifically with the F-actin capping protein CapZ in splenocytes, and was therefore termed ‘CapZIP’ (CapZ-interacting protein). Human CapZIP was phosphorylated at Ser-179 and Ser-244 by MAPKAP-K2 (mitogen-activated protein kinase-activated protein kinase 2) or MAPKAP-K3 in vitro. Anisomycin induced the phosphorylation of CapZIP at Ser-179 in Jurkat cells, which was prevented by SB 203580, consistent with phosphorylation by MAPKAP-K2 and/or MAPKAP-K3. However, osmotic shock-induced phosphorylation of Ser-179 was unaffected by SB 203580. These and other results suggest that CapZIP is phosphorylated at Ser-179 in cells by MAPKAP-K2/MAPKAP-K3, and at least one other protein kinase. Stress-activated MAP kinase family members phosphorylated human CapZIP at many sites, including Ser-68, Ser-83, Ser-108 and Ser-216. Ser-108 became phosphorylated when Jurkat cells were exposed to osmotic shock, which was unaffected by SB 203580 and/or PD 184352, or in splenocytes from mice that do not express either SAPK3/p38γ or SAPK4/p38δ. Our results suggest that CapZIP may be phosphorylated by JNK (c-Jun N-terminal kinase), which phosphorylates CapZIP to >5 mol/mol within minutes in vitro. Osmotic shock or anisomycin triggered the dissociation of CapZIP from CapZ in Jurkat cells, suggesting that phosphorylation of CapZIP may regulate the ability of CapZ to remodel actin filament assembly in vivo.


Biochimie ◽  
2000 ◽  
Vol 82 (12) ◽  
pp. 1123-1127 ◽  
Author(s):  
Thomas G Hofmann ◽  
Antoaneta Mincheva ◽  
Peter Lichter ◽  
Wulf Dröge ◽  
M Lienhard Schmitz

Author(s):  
Reyes Ródenas ◽  
Grégory Vert

Abstract Protein kinases constitute essential regulatory components in the majority of cellular processes in eukaryotic cells. The CBL-INTERACTING PROTEIN KINASE (CIPK) family of plant protein kinases functions in calcium (Ca2+)-related signaling pathways and is therefore involved in the response to a wide variety of signals in plants. By covalently linking phosphate groups to their target proteins, CIPKs regulate the activity of downstream targets, their localization, their stability and their ability to interact with other proteins. In Arabidopsis, the CIPK23 kinase has emerged as a major hub driving root responses to diverse environmental stresses, including drought, salinity and nutrient imbalances, such as potassium, nitrate and iron deficiencies, as well as ammonium, magnesium and non-iron metal toxicities. This review will chiefly report on the prominent roles of CIPK23 in the regulation of plant nutrient transporters and on the underlying molecular mechanisms. We will also discuss the different scenarios explaining how a single promiscuous kinase, such as CIPK23, may convey specific responses to a myriad of signals.


Sign in / Sign up

Export Citation Format

Share Document