Genotoxic and cytotoxic effects of iron sulfate in cultured human lymphocytes treated in different phases of cell cycle

2008 ◽  
Vol 22 (3) ◽  
pp. 723-729 ◽  
Author(s):  
P.D.L. Lima ◽  
M.C. Vasconcellos ◽  
R.A. Montenegro ◽  
C.M.L. Sombra ◽  
M.O. Bahia ◽  
...  
2008 ◽  
Vol 22 (4) ◽  
pp. 1032-1037 ◽  
Author(s):  
P.D.L. Lima ◽  
M.C. Vasconcellos ◽  
M.O. Bahia ◽  
R.C. Montenegro ◽  
C.O. Pessoa ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
pp. 83-99 ◽  
Author(s):  
B. Yilmaz ◽  
E. T. Irmak ◽  
Y. Turhan ◽  
S. Doğan ◽  
M. Doğan ◽  
...  

AbstractThe aims of the present study were to synthesize the intercalated kaolinite samples with dimethylsulfoxide (DMSO), glutamic acid (GA), succinimide (SIM), cetylpyridiniumchloride (CPC), and hexadecyltrimethylammoniumchloride (HDTMA+); to characterize by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and to determine the hemocompatibility and the cytotoxic effects of the intercalated kaolinite nanoclays on human lymphocytes. It was found that the intercalation with DMSO did not cause any decrease in cell viability until its maximum concentration (500 µg/mL), however, the intercalation with SIM, CPC, and (HDTMA+) causd important decreases in lymphocyte viabilities. It was determined that no significant decrease was observed in protein content of the lymphocyte cells exposed to the kaolinite nanoclays except the ones intercalated with SIM. Furthermore, the pristine kaolinite nanoclays which were intercalated with DMSO, GA, and SIM exhibited high hemocompatibility and the nanoclays intercalated with CPC and (HDTMA+) were highly hemocompatibile for the amounts below 125 and 500 µg/mL, respectively. All the results of this work can serve for the human risk assesment of intercalated nanoclays.


Blood ◽  
1983 ◽  
Vol 62 (4) ◽  
pp. 821-826 ◽  
Author(s):  
J Mendelsohn ◽  
I Trowbridge ◽  
J Castagnola

Abstract A monoclonal antibody, 42/6, which blocks the binding of transferrin to its receptor on the cell membrane, inhibits proliferation of human lymphocytes stimulated by phytohemagglutinin. Anti-receptor antibody B3/25, which does not block transferrin binding, does not alter the mitogenic response. Addition of soluble iron, in the form of ferric nitrilotriacetic acid, results in partial reversal of inhibition. Lymphocytes in the quiescent phase of the cell cycle at the time of 42/6 antibody addition are unable to traverse S phase, whereas cells actively proliferating when antibody is added are sensitive to its inhibitory effects throughout all phases of the cell cycle. Inhibition is static rather than cidal, since it can be reversed by removal of antibody after up to 48 hr of exposure.


Pathogens ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 38 ◽  
Author(s):  
Bruce J. Shenker ◽  
Lisa M. Walker ◽  
Ali Zekavat ◽  
Robert H. Weiss ◽  
Kathleen Boesze-Battaglia

The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB’s ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21−) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21− cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21− cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3161-3161
Author(s):  
Vicky Lock ◽  
Laurence Cooke ◽  
Murray Yule ◽  
Neil T Thompson ◽  
K. Della Croce ◽  
...  

Abstract Cyclin Dependent Kinases (CDKs) play a central role in the eukaryotic cell cycle. The activation of these kinases is modulated by the expression and binding of their regulatory cyclin partners. Their key role in cell cycle progression, coupled to evidence that pathways leading to their activation are deregulated in a number of human cancers makes them attractive therapeutic targets. More recently the role of CDKs 7, 8 and 9 in the regulation of transcription has been explored. CDK9 has been shown to play a role in the regulation of transcription via phosphorylation of RNA polymerase II (RNA pol II). The outcome of transcriptional inhibition via CDK9 exhibits significant variation between cell lines. B-Cell lymphoproliferative disorders, including CLL, rely on the expression of transcripts with a short half-life such as Mcl-1, Bcl-2 and XIAP for survival. In vitro studies have demonstrated that compounds with transcriptional inhibitory effects are effective pro-apoptotic agents in models of this disease. AT7519 is a potent inhibitor of cyclin dependent kinases 1, 2 and 9 and is currently in early phase clinical development. These studies profile the mechanism of action of AT7519 on CLL cells isolated from patients. Primary cell samples were isolated from a total of 15 patients with CLL with various stages of disease (8 Stage 0, 0/I or II and 7 Stage IV) and who were either treatment naïve or had received a variety of prior therapies. Patient samples were characterised for cytogenetic abnormalities (11q, 17p and 13q deletion or trisomy 12) as well IgVH mutation and ZAP70 expression. AT7519 was shown to induce apoptosis (by MTS, morphology and PARP cleavage) in these samples at concentrations of 100–700nM. AT7519 appears equally effective at inhibiting the survival of CLL cells harbouring a variety of mutations including those representative of patients that fall within poorer prognosis treatment groups. The amount of AT7519 required to induce cell death in 50% of the CLL cell population increased as exposure time was decreased but significant cell death was obtained at doses approximating to 1uM following 4–6h of treatment. These doses are equivalent to exposures achieved in ongoing AT7519 clinical studies indicating that cytotoxic doses can be achieved in patients on well tolerated schedules. The mechanism of AT7519 cytotoxic effects was investigated by western blotting for a variety of cell cycle and apoptotic markers following incubation with compound. Short term treatments (4–6h) resulted in inhibition of phosphorylation of the transcriptional marker RNA pol II and the downregulation of the anti-apoptotic protein Mcl-1. Additional antiapoptotic proteins including XIAP and Bcl-2 remained unchanged. The reduction in Mcl-1 protein levels was associated with an increase in the apoptotic marker cleaved PARP. No inhibition of cell cycle markers such as phospho-retinoblastoma protein was observed in the same samples suggesting that the cytotoxic effects of AT7519 in CLL patient samples is due to its transcriptional activity alone. Together the data suggest AT7519 offers a promising treatment strategy for patients with advanced B-cell leukemia and lymphoma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4153-4153 ◽  
Author(s):  
Elisabeth J Walsby ◽  
Chiara Ghiggi ◽  
Ruth H Mackay ◽  
Simon R Green ◽  
Steven Knapper ◽  
...  

Abstract Abstract 4153 2′–Cyano–2′–deoxyarabinofuranosylcytosine (CNDAC) is the metabolic product of sapacitabine following hydrolysis of the palmitoyl sidechain from the pyrimidine analog primarily by plasma, gut and liver amidases. CNDAC is in turn phosphorylated into the active triphosphate form (CNDACTP) by deoxycytidine kinase (dCK). CNDACTP is incorporated into DNA resulting in single stranded DNA breaks during replication and inducing cell cycle arrest. Previously the cytotoxic effects of CNDAC have also been associated with intracellular accumulation of CNDAC triphosphate and chain termination. CNDAC and sapacitabine have overlapping cytotoxic effects. Acute myeloid leukaemia (AML) cell lines NB4 and HL-60 had an LD50 of 0.24μM (± 0.24) for CNDAC and 0.23μM (± 0.21) for cytarabine (AraC) following 24 hours treatment. Primary AML blasts isolated from patients at diagnosis (n = 15) had a higher mean LD50 (25.22μM ± 19.41) for CNDAC and AraC (8.09μM ± 8.93). This is thought to be due to the requirement of cells to be actively cycling in order to be susceptible to these agents. CNDAC induces apoptosis in NB4 and HL-60 cell lines with significant increases in the percentage of cells with increased Annexin V/propidium iodide staining at concentrations of 1.0μM and above (P < 0.04) and significant caspase-3 activation at concentrations of 0.1μM and above (P < 0.05). Treatment with CNDAC also results in a significant concentration-dependent accumulation in the G2 phase of the cell cycle after 24 hours in NB4 and HL-60 cells (P = 0.003 and 0.011 respectively). Synergy was observed in the AML cell lines when CNDAC was combined with AraC at a ratio of 2:1 The mean combination index for CNDAC and AraC was 0.67 (± 0.21). The activity of deoxycytidine kinase (dCK) was blocked by the addition of excess deoxycytidine, under these conditions the effects of CNDAC were abrogated (P < 0.05) in NB4 and HL-60 cells suggesting that CNDAC requires phosphorylation by dCK for its activation in the cells. The nucleoside transporters hENT 1 and 2 and hCNT3 transport a range of nucleoside analogues through the cell membrane into cells, the use of hENT inhibitors led to a 2.5 fold increase in the LD50 for CNDAC (P = 0.028) over 48 hours. This prolonged exposure to CNDAC could have resulted in some passive uptake of CNDAC into the cells potentially explaining why the agent retained some cell killing activity. Equivalent results have been obtained with dCK and hENT inhibitors in other cell lines indicating that there is a general requirement for these enzymes for CNDAC activity. Interestingly, when cells are treated with the parent drug sapacitabine in the presence of excess deoxycytidine the cytotoxicity is reduced, but when cells are treated in the presence of hENT inhibitors, sapacitabine's cytotoxicity is improved. This suggests that the presence of the palmitoyl side-chain allows membrane permeability even in the absence of the traditional nucleoside transporters. Disclosures: Green: Cyclacel Ltd: Employment.


Sign in / Sign up

Export Citation Format

Share Document