scholarly journals Evaluation of an air–liquid interface cell culture model for studies on the inflammatory and cytotoxic responses to tobacco smoke aerosols

2015 ◽  
Vol 29 (7) ◽  
pp. 1720-1728 ◽  
Author(s):  
David Azzopardi ◽  
Linsey E. Haswell ◽  
Geoff Foss-Smith ◽  
Katherine Hewitt ◽  
Nathan Asquith ◽  
...  
2015 ◽  
Vol 25 (5) ◽  
pp. 055015 ◽  
Author(s):  
Rahim Rahimi ◽  
Manuel Ochoa ◽  
Amy Donaldson ◽  
Tejasvi Parupudi ◽  
Mehmet R Dokmeci ◽  
...  

2019 ◽  
Vol 58 ◽  
pp. 78-85 ◽  
Author(s):  
Bruna Ferreira Tollstadius ◽  
Artur Christian Garcia da Silva ◽  
Bruna Cristiane Oliveira Pedralli ◽  
Marize Campos Valadares

2004 ◽  
Vol 171 (4S) ◽  
pp. 295-295
Author(s):  
Fernando C. Delvecchio ◽  
Ricardo M. Brizuela ◽  
Karen J. Byer ◽  
W. Patrick Springhart ◽  
Saeed R. Khan ◽  
...  

2016 ◽  
Vol 16 (9) ◽  
pp. 1190-1197 ◽  
Author(s):  
Dziugas Meskelevicius ◽  
Kastytis Sidlauskas ◽  
Ruta Bagdonaviciute ◽  
Julius Liobikas ◽  
Daiva Majiene

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


Sign in / Sign up

Export Citation Format

Share Document