Roles of lysine residues and N-terminal α-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles

Toxicon ◽  
2010 ◽  
Vol 55 (2-3) ◽  
pp. 256-264 ◽  
Author(s):  
Yi-Ling Chiou ◽  
Pei-Hsiu Kao ◽  
Wen-Hsin Liu ◽  
Shinne-Ren Lin ◽  
Long-Sen Chang
1970 ◽  
Vol 48 (11) ◽  
pp. 1249-1259 ◽  
Author(s):  
Leticia Rao ◽  
T. Hofmann

The reaction of elastase with trinitrobenzene sulfonic acid was investigated in the pH range 9–12. Elastase was found to be inactivated by 2,4,6-trinitrobenzene sulfonic acid. The pH dependence of the pseudo first-order inactivation rate constant showed a pK of 10.3 and gave a Hill plot coefficient of 1.15. Trinitrophenol did not inactivate the enzyme. These results indicate that the inactivation is due to the covalent reaction of trinitrobenzene sulfonic acid with a single group in the enzyme. This group is not the N-terminal since the loss of N-terminal valine was considerably slower than the loss of activity at pH 10.5. The inactivation of elastase with 2,4-dinitrofluorobenzene also showed no correlation with the loss of the N-terminal. When the enzyme was exhaustively treated and fully inactivated with trinitrobenzene sulfonic acid at pH 10.5, the N-terminal valine and two out of three lysine residues were trinitrophenylated. No evidence for the loss of histidine was found. One of the tyrosine residues may be trinitrophenylated as judged from the molar extinction of the trinitrophenylated protein, but it has not been possible to isolate a trinitrophenylated tyrosine-containing peptide. The results can be interpreted in one of two ways: (a) trinitrophenylation of a group with a pK of 10.3, not involved in the activity, inactivates because the introduction of the trinitrophenyl residue causes a denaturation of the enzyme; or (b) a group with a pK of 10.3 controls the active conformation of the enzyme. The results do not exclude the possibility that the N-terminal plays an important role in the activity of the enzyme. Below pH 10.5 the reactivity of the N-terminal is low, indicating that it is buried.At pH 9.0 only the ε-amino group of lysine in position 224 reacted with trinitrobenzene sulfonic acid and full activity was retained. The second-order rate constant for the trinitrophenylation of this group was 25 times higher than that of the ε-amino group of the α-N-benzoyllysine.


1984 ◽  
Vol 222 (1) ◽  
pp. 93-102 ◽  
Author(s):  
G J Hart ◽  
F J Leeper ◽  
A R Battersby

When hydroxymethylbilane synthase (porphobilinogen deaminase) from Euglena gracilis is incubated with pyridoxal 5′-phosphate at pH 7.0 and 0 degree C, it rapidly loses part of its activity. The proportion of activity that remains decreases as the concentration of the modifier increases up to approx. 2mM, above which no further significant inactivation occurs. Dialysis of the partly inactivated enzyme restores its activity, whereas reduction with NaBH4 makes the inactivation permanent. The maximum inactivation achievable from one cycle of the treatment with pyridoxal 5′-phosphate, then with borohydride, is 53 +/- 5%; taking this modified enzyme through second and third cycles causes further loss of activity. The enzyme from Rhodopseudomonas spheroides behaves similarly, but there are quantitative differences. Spectroscopic evidence indicates that the inactivation procedure modifies lysine residues, and labelling studies show that epsilon-N-pyridoxyl-L-lysine is a product when permanently inactivated enzyme is completely hydrolysed. Several lysine residues per molecule of the E. gracilis enzyme are modified by the treatment with pyridoxal 5′-phosphate and borohydride, but only one appears to be essential for enzymic activity, since porphobilinogen protects the enzyme against inactivation and then one fewer lysine residue per molecule of enzyme is affected. It is suggested that, during the biosynthesis of hydroxymethylbilane, the first porphobilinogen unit is covalently bound to the enzyme through the epsilon-amino group of the essential lysine.


1986 ◽  
Vol 11 (1) ◽  
pp. 47-50 ◽  
Author(s):  
A. Vioque ◽  
F. Hern�ndez ◽  
E. Palaci�n

ChemBioChem ◽  
2015 ◽  
Vol 16 (16) ◽  
pp. 2337-2347 ◽  
Author(s):  
Zeljko Simic ◽  
Matthias Weiwad ◽  
Angelika Schierhorn ◽  
Clemens Steegborn ◽  
Mike Schutkowski

1989 ◽  
Vol 258 (3) ◽  
pp. 683-687 ◽  
Author(s):  
C G Knight ◽  
T Stephens

We have been developing the use of plasma-membrane-bound fluorescent probes to measure the pH values at the surfaces of living chondrocytes. For this purpose, three lipophilic pH indicators were made by covalently binding the xanthene dyes fluorescein, eosin or dichlorofluorescein to the amino group of phosphatidylethanolamine. The probes were incorporated into phospholipid vesicles and the effect of pH on the fluorescence was characterized. Fluorescence was measured at a single emission wavelength during excitation at two wavelengths, and the ratio of the intensities was calculated. The experimentally observed pKobs. values were determined by fitting the fluorescence ratios to the Henderson-Hasselbalch equation. All three probes acted as pH indicators, and the eosinyl-, dichlorofluoresceinyl- and fluoresceinylphosphatidylethanolamines had pKobs. values of 3.5, 6.3 and 7.5 respectively. At physiological salt concentrations, changes in the composition of the vesicle membrane had little effect on these values. We concluded that these probes were promising candidates for the measurement of pH values at cell surfaces.


Author(s):  
Michael Hellwig ◽  
Julia Nitschke ◽  
Thomas Henle

AbstractThe Maillard reaction is traditionally subdivided into three stages that start consecutively and run in parallel. Here, we show that N-ε-carboxymethyllysine (CML), a compound formed in the late stage of the reaction, can undergo a second glycation event at its secondary amino group leading to a new class of Amadori rearrangement products. When N-α-hippuryl-CML was incubated in the presence of reducing sugars such as glucose, galactose, ribose, xylose, maltose, or lactose in solution for 1 h at 75 °C, the compound was degraded by 6–21%, and N-ε-carboxymethyl-N-ε-deoxyketosyl lysine derivatives were formed. Under the same conditions, lysine was 5–10 times more reactive than CML. N-α-hippuryl-N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (hippuryl-CMFL) and N-ε-carboxymethyl-N-ε-(1-deoxyfructosyl)-l-lysine (CMFL) were synthesized, isolated and characterized by MS/MS and NMR experiments. Depending on the reaction conditions, up to 21% of CMFL can be converted to the furosine analogue N-ε-carboxymethyl-N-ε-furoylmethyl-l-lysine (CM-Fur) during standard acid protein hydrolysis with hydrochloric acid. Incubation of bovine serum albumin (BSA) with glucose for up to 9 weeks at 37 °C revealed the formation of CMFL in the protein as assessed by HPLC–MS/MS in the MRM mode. Under these conditions, ca. 13% of lysine residues had been converted to fructosyllysine, and 0.03% had been converted to CMFL. The detection of glycation products of glycated amino acids (heterogeneous multiple glycation) reveals a novel pathway in the Maillard reaction.


2021 ◽  
Vol 22 (12) ◽  
pp. 6256
Author(s):  
Justyna Śmiałek ◽  
Michał Nowakowski ◽  
Monika Bzowska ◽  
Oliwia Bocheńska ◽  
Agnieszka Wlizło ◽  
...  

BacSp222 is a multifunctional peptide produced by Staphylococcus pseudintermedius 222. This 50-amino acid long peptide belongs to subclass IId of bacteriocins and forms a four-helix bundle molecule. In addition to bactericidal functions, BacSp222 possesses also features of a virulence factor, manifested in immunomodulatory and cytotoxic activities toward eukaryotic cells. In the present study, we demonstrate that BacSp222 is produced in several post-translationally modified forms, succinylated at the ε-amino group of lysine residues. Such modifications have not been previously described for any bacteriocins. NMR and circular dichroism spectroscopy studies have shown that the modifications do not alter the spatial structure of the peptide. At the same time, succinylation significantly diminishes its bactericidal and cytotoxic potential. We demonstrate that the modification of the bacteriocin is an effect of non-enzymatic reaction with a highly reactive intracellular metabolite, i.e., succinyl-coenzyme A. The production of succinylated forms of the bacteriocin depends on environmental factors and on the access of bacteria to nutrients. Our study indicates that the production of succinylated forms of bacteriocin occurs in response to the changing environment, protects producer cells against the autotoxicity of the excreted peptide, and limits the pathogenicity of the strain.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Michal Tracz ◽  
Wojciech Bialek

AbstractProtein ubiquitination has become one of the most extensively studied post-translational modifications. Originally discovered as a critical element in highly regulated proteolysis, ubiquitination is now regarded as essential for many other cellular processes. This results from the unique features of ubiquitin (Ub) and its ability to form various homo- and heterotypic linkage types involving one of the seven different lysine residues or the free amino group located at its N-terminus. While K48- and K63-linked chains are broadly covered in the literature, the other types of chains assembled through K6, K11, K27, K29, and K33 residues deserve equal attention in the light of the latest discoveries. Here, we provide a concise summary of recent advances in the field of these poorly understood Ub linkages and their possible roles in vivo.


1998 ◽  
Vol 95 (2) ◽  
pp. 221-224
Author(s):  
B. T. Doan ◽  
C. Nezry ◽  
L. Rene ◽  
B. Badet ◽  
J. C. Beloeil

Sign in / Sign up

Export Citation Format

Share Document