Solved in vivo/in vitro discrepancy in methapyrilene induced gene alterations in rat liver and in collagen sandwich cultured primary rat hepatocytes

2009 ◽  
Vol 189 ◽  
pp. S77
Author(s):  
Markus Schug ◽  
Tanja Heise ◽  
Georgia Günther ◽  
Dorothe Storm ◽  
Axel Oberemm ◽  
...  
2012 ◽  
Vol 86 (9) ◽  
pp. 1399-1411 ◽  
Author(s):  
Tatyana Y. Doktorova ◽  
Heidrun Ellinger-Ziegelbauer ◽  
Mathieu Vinken ◽  
Tamara Vanhaecke ◽  
Joost van Delft ◽  
...  

1992 ◽  
Vol 287 (2) ◽  
pp. 645-649 ◽  
Author(s):  
A R Freedman ◽  
R J Sharma ◽  
G J Nabel ◽  
S G Emerson ◽  
G E Griffin

The cellular localization of nuclear factor kappa B (NF-kappa B) binding activity in rat liver has been investigated using electrophoretic mobility shift assay on extracts of highly purified hepatocytes and Kupffer cells obtained from liver perfused in vivo with collagenase. Constitutive NF-kappa B binding activity was demonstrated in nuclear extracts of control Kupffer cells, and this was not apparently influenced by injection of lipopolysaccharide (LPS) into rats 24 h before perfusion. In contrast, little nuclear NF-kappa B binding activity was present in hepatocytes from control animals, although there was detectable inactive, inhibitor-bound, NF-kappa B in the cytoplasm. However, nuclear NF-kappa B binding activity was increased in hepatocytes from LPS-treated animals and after in vitro culture of control rat hepatocytes. Thus NF-kappa B binding activity has been demonstrated in highly purified hepatocytes and appears to be inducible both in vivo and in vitro. These findings support a role for NF-kappa B in hepatocyte gene regulation which may be important in the modulation of the hepatic acute phase response.


2012 ◽  
Vol 86 (11) ◽  
pp. 1703-1715 ◽  
Author(s):  
Tatyana Y. Doktorova ◽  
Heidrun Ellinger-Ziegelbauer ◽  
Mathieu Vinken ◽  
Tamara Vanhaecke ◽  
Joost van Delft ◽  
...  

1999 ◽  
Vol 276 (6) ◽  
pp. C1374-C1382 ◽  
Author(s):  
Susan A. Berry ◽  
Pearl L. Bergad ◽  
Allison M. Stolz ◽  
Howard C. Towle ◽  
Sarah Jane Schwarzenberg

The rat serine protease inhibitor (Spi) 2 gene family includes both positive (Spi 2.2) and negative (Spi 2.1) acute phase reactants, facilitating modeling of regulation of hepatic acute phase response (APR). To examine the role of signal transducer and activation of transcription (STAT) proteins in the divergent regulation of these model genes after induction of APR, we evaluated the proximal promoters of the genes, focusing on STAT binding sites contained in these promoter elements. Induction of APR by turpentine injection includes activation of a STAT3 complex that can bind to a γ-activated sequence (GAS) in the Spi 2.2 gene promoter, although the Spi 2.2 GAS site can bind STAT1 or STAT5 as well. To create an in vitro model of APR, primary hepatocytes were treated with combinations of cytokines and hormones to mimic the hormonal milieu of the whole animal after APR induction. Incubation of primary rat hepatocytes with interleukin (IL)-6, a critical APR cytokine, leads to activation of STAT3 and a 28-fold induction of a chloramphenicol acetyltransferase reporter construct containing the −319 to +85 region of the Spi 2.2 promoter. This suggests the turpentine-induced increase of Spi 2.2 is mediated primarily by IL-6. In contrast, although turpentine treatment reduces Spi 2.1 mRNA in vivo and IL-6 does not increase Spi 2.1 mRNA in primary rat hepatocytes, treatment of hepatocytes with IL-6 results in a 5.4-fold induction of Spi 2.1 promoter activity mediated through the paired GAS elements in this promoter. Differential regulation of Spi 2.1 and 2.2 genes is due in part to differences in the promoters of these genes at the GAS sites. IL-6 alone fails to reproduce the pattern of rat Spi 2 gene expression that results from turpentine-induced inflammation.


2012 ◽  
Vol 303 (3) ◽  
pp. G344-G355 ◽  
Author(s):  
Xin Zhang ◽  
Qianming Bai ◽  
Leyuan Xu ◽  
Genta Kakiyama ◽  
William M. Pandak ◽  
...  

Cytosolic sulfotransferase 2B1b (SULT2B1b) catalyzes the sulfation of 3β-hydroxysteroids and functions as a selective cholesterol and oxysterol sulfotransferase. Activation of liver X receptors (LXRs) by oxysterols has been known to be an antiproliferative factor. Overexpression of SULT2B1b impairs LXR's response to oxysterols, by which it regulates lipid metabolism. The aim of this study was to investigate in vivo and in vitro effects of SULT2B1b on liver proliferation and the underlying mechanisms. Primary rat hepatocytes and C57BL/6 mice were infected with adenovirus encoding SULT2B1b. Liver proliferation was determined by measuring the proliferating cell nuclear antigen (PCNA) immunostaining labeling index. The correlation between SULT2B1b and PCNA expression in mouse liver tissues was determined by double immunofluorescence. Gene expressions were evaluated by quantitative real-time PCR and Western blot analysis. SULT2B1b overexpression in mouse liver tissues increased PCNA-positive cells in a dose- and time-dependent manner. The increased expression of PCNA in mouse liver tissues was only observed in the SULT2B1b transgenic cells. Small interference RNA SULT2B1b significantly inhibited cell cycle regulatory gene expressions in primary rat hepatocytes. LXR activation by T0901317 effectively suppressed SULT2B1b-induced gene expression in vivo and in vitro. SULT2B1b may promote hepatocyte proliferation by inactivating oxysterol/LXR signaling.


Sign in / Sign up

Export Citation Format

Share Document