Dibutyltin blocks metabotropic glutamate receptor mGluR5 signaling resulting in increased intracellular calcium and endoplasmic reticulum stress in mouse BV-2 microglia cells

2013 ◽  
Vol 221 ◽  
pp. S168
Author(s):  
Boonrat Chantong ◽  
Alex Odermatt
1996 ◽  
Vol 76 (6) ◽  
pp. 4127-4139 ◽  
Author(s):  
L. Zirpel ◽  
E. W. Rubel

1. Neurons in the cochlear nucleus, nucleus magnocellularis (NM), of embryonic and neonatal chicks are dependent on eighth nerve activity for their maintenance and survival. Removing this input results in the death of 20–40% of the NM neurons and profound changes in the morphology and metabolism of surviving neurons. 2. One of the first changes in NM neurons after an in vivo cochlea removal is an increase in intracellular calcium concentration ([Ca2+]i). Increased [Ca2+]i has been implicated in a number of neuropathologic conditions. 3. In this study, we orthodromically and antidromically stimulated NM neurons in an in vitro brain stem slice preparation and monitored NM field potentials while simultaneously assessing the [Ca2+]i of NM neurons using fura-2. 4. During continuous orthodromic stimulation, [Ca2+]i of NM neurons remained constant at 80 nM. In the absence of stimulation, NM neuron [Ca2+]i increased steadily to 230 nM by 90 min. Antidromic and contralateral stimulation produced a [Ca2+]i increase in NM neurons that was similar in magnitude but slightly more rapid than that observed in the absence of stimulation. 5. Addition of the metabotropic glutamate receptor (mGluR) antagonists (R,S)-alpha-methyl-4-carboxyphenylglycine or 2-amino-3-phosphonopropionic acid to the superfusate during continued orthodromic stimulation resulted in a dose-dependent, rapid, and dramatic increase in NM neuron [Ca2+]i without affecting the postsynaptic field potentials recorded from NM. 6. The ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2-amino-5-phosphonovalerate eliminated NM field potentials during continued orthodromic stimulation but did not result in an increase in [Ca2+]i. 7. Continuous superfusion of trans-(+/-)-aminocyclopentane dicarboxylate, but not glutamate, prevented the increase in [Ca2+]i in the absence of stimulation. 8. These results suggest that NM neurons rely on eighth nerve activity-dependent activation of a mGluR to maintain physiological [Ca2+]i. Removal of this mGluR activation results in an increase in [Ca2+]i that may contribute to the early stages of degeneration and eventual death of these neurons.


2019 ◽  
Vol 28 (17) ◽  
pp. 2835-2850 ◽  
Author(s):  
Franziska Bursch ◽  
Norman Kalmbach ◽  
Maximilian Naujock ◽  
Selma Staege ◽  
Reto Eggenschwiler ◽  
...  

Abstract The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


2008 ◽  
Vol 283 (36) ◽  
pp. 24300-24307 ◽  
Author(s):  
John H. Caldwell ◽  
Greta Ann Herin ◽  
Georg Nagel ◽  
Ernst Bamberg ◽  
Astrid Scheschonka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document