In vitro assessment of the proinflammatory effects of biomass combustion generated ultrafine particles (UFP)

2015 ◽  
Vol 238 (2) ◽  
pp. S219
Author(s):  
C.L. Galli ◽  
V. Galbiati ◽  
M. Marinovich ◽  
S. Ozgen ◽  
G. Lonati ◽  
...  
2019 ◽  
Vol 20 (20) ◽  
pp. 4992 ◽  
Author(s):  
Corsini ◽  
Marinovich ◽  
Vecchi

Biomass burning is considered an important source of indoor and outdoor air pollutants worldwide. Due to competitive costs and climate change sustainability compared to fossil fuels, biomass combustion for residential heating is increasing and expected to become the major source of primary particulate matter emission over the next 5–15 years. The understanding of health effects and measures necessary to reduce biomass emissions of harmful compounds is mandatory to protect public health. The intent of this review is to report available data on ultrafine particles (UFPs, i.e., particles with diameter smaller than 100 nm) emitted by residential biomass combustion and their effects on human health (in vitro and in vivo studies). Indeed, as far as we know, papers focusing specifically on UFPs originating from residential biomass combustion and their impact on human health are still lacking.


2016 ◽  
Vol 258 ◽  
pp. S264-S265
Author(s):  
E. Corsini ◽  
A. Papale ◽  
V. Galbiati ◽  
P. Fermo ◽  
R. Vecchi ◽  
...  

Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
VK Manda ◽  
OR Dale ◽  
C Awortwe ◽  
Z Ali ◽  
IA Khan ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 2444-2449 ◽  
Author(s):  
Ekaterina Chudinova ◽  
Maria Surmeneva ◽  
Andrey Koptioug ◽  
Irina V. Savintseva ◽  
Irina Selezneva ◽  
...  

Custom orthopedic and dental implants may be fabricated by additive manufacturing (AM), for example using electron beam melting technology. This study is focused on the modification of the surface of Ti6Al4V alloy coin-like scaffolds fabricated via AM technology (EBM®) by radio frequency (RF) magnetron sputter deposition of hydroxyapatite (HA) coating. The scaffolds with HA coating were characterized by Scanning Electron microscopy, X-ray diffraction. HA coating showed a nanocrystalline structure with the crystallites of an average size of 32±9 nm. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells was studied using biological short-term tests in vitro. In according to in vitro assessment, thin HA coating stimulated the attachment and proliferation of cells. Human mesenchymal stem cells cultured on the HA-coated scaffold also formed mineralized nodules.


Sign in / Sign up

Export Citation Format

Share Document