Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations

2020 ◽  
Vol 334 ◽  
pp. 53-59
Author(s):  
Fabiana Ventura ◽  
Mariana Muga ◽  
Vanessa Coelho-Santos ◽  
Carlos A. Fontes-Ribeiro ◽  
Ricardo A. Leitão ◽  
...  
Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1843-1850 ◽  
Author(s):  
E Arnaud ◽  
M Lafay ◽  
P Gaussem ◽  
V Picard ◽  
M Jandrot-Perrus ◽  
...  

Abstract An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion- binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration- dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma- thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion- binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.


2010 ◽  
Vol 113 (2) ◽  
pp. 447-453 ◽  
Author(s):  
Arie Reijerkerk ◽  
Gijs Kooij ◽  
Susanne M. A. van der Pol ◽  
Thomas Leyen ◽  
Kim Lakeman ◽  
...  

2008 ◽  
Vol 6 (3) ◽  
pp. 179-192 ◽  
Author(s):  
Svetlana Stamatovic ◽  
Richard Keep ◽  
Anuska Andjelkovic

2012 ◽  
Vol 1489 ◽  
pp. 133-139 ◽  
Author(s):  
J.A. Lockman ◽  
W.J. Geldenhuys ◽  
M.R. Jones-Higgins ◽  
J.D. Patrick ◽  
D.D. Allen ◽  
...  

2018 ◽  
Vol 25 (4) ◽  
pp. 761-775 ◽  
Author(s):  
Helen Q. Cai ◽  
Vibeke S. Catts ◽  
Maree J. Webster ◽  
Cherrie Galletly ◽  
Dennis Liu ◽  
...  

Author(s):  
Peijie Wu ◽  
Ling Qiao ◽  
Han Yu ◽  
Hui Ming ◽  
Chao Liu ◽  
...  

Cholestasis is a kind of stressful syndrome along with liver toxicity, which has been demonstrated to be related to fibrosis, cirrhosis, even cholangiocellular or hepatocellular carcinomas. Cholestasis usually caused by the dysregulated metabolism of bile acids that possess high cellular toxicity and synthesized by cholesterol in the liver to undergo enterohepatic circulation. In cholestasis, the accumulation of bile acids in the liver causes biliary and hepatocyte injury, oxidative stress, and inflammation. The farnesoid X receptor (FXR) is regarded as a bile acid–activated receptor that regulates a network of genes involved in bile acid metabolism, providing a new therapeutic target to treat cholestatic diseases. Arbutin is a glycosylated hydroquinone isolated from medicinal plants in the genus Arctostaphylos, which has a variety of potentially pharmacological properties, such as anti-inflammatory, antihyperlipidemic, antiviral, antihyperglycemic, and antioxidant activity. However, the mechanistic contributions of arbutin to alleviate liver injury of cholestasis, especially its role on bile acid homeostasis via nuclear receptors, have not been fully elucidated. In this study, we demonstrate that arbutin has a protective effect on α-naphthylisothiocyanate–induced cholestasis via upregulation of the levels of FXR and downstream enzymes associated with bile acid homeostasis such as Bsep, Ntcp, and Sult2a1, as well as Ugt1a1. Furthermore, the regulation of these functional proteins related to bile acid homeostasis by arbutin could be alleviated by FXR silencing in L-02 cells. In conclusion, a protective effect could be supported by arbutin to alleviate ANIT-induced cholestatic liver toxicity, which was partly through the FXR pathway, suggesting arbutin may be a potential chemical molecule for the cholestatic disease.


Sign in / Sign up

Export Citation Format

Share Document