scholarly journals Charging infrastructure roll-out strategies for large scale introduction of electric vehicles in urban areas: An agent-based simulation study

2021 ◽  
Vol 148 ◽  
pp. 262-285
Author(s):  
Rick Wolbertus ◽  
Robert van den Hoed ◽  
Maarten Kroesen ◽  
Caspar Chorus
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Lennart Adenaw ◽  
Markus Lienkamp

In order to electrify the transport sector, scores of charging stations are needed to incentivize people to buy electric vehicles. In urban areas with a high charging demand and little space, decision-makers are in need of planning tools that enable them to efficiently allocate financial and organizational resources to the promotion of electromobility. As with many other city planning tasks, simulations foster successful decision-making. This article presents a novel agent-based simulation framework for urban electromobility aimed at the analysis of charging station utilization and user behavior. The approach presented here employs a novel co-evolutionary learning model for adaptive charging behavior. The simulation framework is tested and verified by means of a case study conducted in the city of Munich. The case study shows that the presented approach realistically reproduces charging behavior and spatio-temporal charger utilization.


2020 ◽  
Vol 54 (3) ◽  
pp. 651-675 ◽  
Author(s):  
W. J. A. van Heeswijk ◽  
M. R. K. Mes ◽  
J. M. J. Schutten ◽  
W. H. M. Zijm

The domain of urban freight transport is becoming increasingly complex. Many urban supply chains are composed of small and independent actors that cannot efficiently organize their highly fragmented supply chains, thereby negatively affecting the quality of life in urban areas. Both companies and local administrators try to improve transport efficiency and reduce external costs, but the effects of such interventions are difficult to predict, especially when applied in combination with each other (an urban logistics scheme). This paper presents an agent-based simulation model to quantify the effects of urban logistics schemes on multiple actors. We provide a detailed mathematical representation in the form of a Markov decision process. Based on an extensive literature study, we aggregate data to represent various actors in typical Western European cities. We perform numerical experiments to obtain insights into urban logistics schemes. The results show that most schemes yield significant environmental improvements but that achieving long-term financial viability is challenging for urban consolidation centers in particular. We also demonstrate that interventions, such as subsidies and access restrictions, do not always yield the intended effect. In a backcasting experiment, we identify conditions and schemes to achieve a financially viable urban consolidation center.


2019 ◽  
Vol 10 (2) ◽  
pp. 42 ◽  
Author(s):  
Igna Vermeulen ◽  
Jurjen Rienk Helmus ◽  
Mike Lees ◽  
Robert van den Hoed

The Netherlands is a frontrunner in the field of public charging infrastructure, having one of the highest number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012–2015), a large percentage of the EV fleet were plugin hybrid electric vehicles (PHEV) due to the subsidy scheme at that time. With an increasing number of full electric vehicles (FEVs) on the market and a current subsidy scheme for FEVs only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have an effect on the charging behavior of the complete fleet, and is reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing agent-based model. Results show important effects of this transition on charging infrastructure performance.


2018 ◽  
Vol 138 ◽  
pp. 119-135 ◽  
Author(s):  
Iván García-Magariño ◽  
Guillermo Palacios-Navarro ◽  
Raquel Lacuesta ◽  
Jaime Lloret

2020 ◽  
Vol 78 ◽  
pp. 102210 ◽  
Author(s):  
Hongcai Zhang ◽  
Colin J.R. Sheppard ◽  
Timothy E. Lipman ◽  
Teng Zeng ◽  
Scott J. Moura

2003 ◽  
Vol 13 (04) ◽  
pp. 629-641 ◽  
Author(s):  
Konstantin Popov ◽  
Mahmoud Rafea ◽  
Fredrik Holmgren ◽  
Per Brand ◽  
Vladimir Vlassov ◽  
...  

We discuss a parallel implementation of an agent-based simulation. Our approach allows to adapt a sequential simulator for large-scale simulation on a cluster of workstations. We target discrete-time simulation models that capture the behavior of Web users and Web sites. Web users are connected with each other in a graph resembling the social network. Web sites are also connected in a similar graph. Users are stateful entities. At each time step, they exhibit certain behaviour such as visiting bookmarked sites, exchanging information about Web sites in the "word-of-mouth" style, and updating bookmarks. The real-world phenomena of emerged aggregated behavior of the Internet population is studied. The system distributes data among workstations, which allows large-scale simulations infeasible on a stand-alone computer. The model properties cause traffic between workstations proportional to partition sizes. Network latency is hidden by concurrent simulation of multiple users. The system is implemented in Mozart that provides multithreading, dataflow variables, component-based software development, and network-transparency. Currently we can simulate up to 106 Web users on 104 Web sites using a cluster of 16 computers, which takes few seconds per simulation step, and for a problem of the same size, parallel simulation offers speedups between 11 and 14.


Sign in / Sign up

Export Citation Format

Share Document