scholarly journals Non-invasive detection of biliary tract cancer by low-coverage whole genome sequencing from plasma cell-free DNA: A prospective cohort study

2021 ◽  
Vol 14 (1) ◽  
pp. 100908
Author(s):  
Xiang Wang ◽  
Xiao-Hui Fu ◽  
Zi-Liang Qian ◽  
Teng Zhao ◽  
An-Qi Duan ◽  
...  
2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e22510-e22510
Author(s):  
Shunli Yang ◽  
Pei Zhihua ◽  
Jianing Yu ◽  
Xiuyu Zhao ◽  
Yiqian Liu ◽  
...  

e22510 Background: Recent advances in circulating cell-free DNA (cfDNA) of plasma have shown that tumor diagnosis based on tumor-specific genetic and epigenetic changes (e.g., somatic mutations, copy number variations, and DNA methylation) is a promising non-invasive method. However, the number of tumor-specific genomic variants identified by whole-genome sequencing (WGS) in early cancer patients is very limited. Moreover, the mutations generated by clonal hematopoiesis in cfDNA can further confound the detection of cancer-specific mutations. It has been shown that ctDNA and cfDNA fragments have differences in length distribution. Compared with a limited number of genomic mutations, cfDNA fragment size index (FSI) is more abundant and easier to be detected. Methods: We designed a novel method for fragment detection of plasma cfDNA based on low-coverage WGS. The fragment length differences between healthy individuals and tumor patients were systematically analyzed. The training dataset includes 50 healthy individuals and 354 patients from eight different cancers. After the data preprocessing, we calculated the weight of fragmental bins and built a model for distinguishing healthy individuals from cancer patients. An independent dataset involving 22 healthy controls and 340 cancer patients was used to validate the model. The performance of our method was measured by the area under the curve (AUC) using the one-versus-all approach. Results: In our analysis, a total of 504 markers were selected from the dataset for model construction. Our model performed well for all cancer types on both training (AUC = 0.804) and validation (AUC = 0.837) datasets. Conclusions: The good performance of our model in large-scale plasma samples demonstrates the potential clinical application of cfDNA fragment analysis in early cancer detection based on low-coverage WGS.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 81-82
Author(s):  
Joaquim Casellas ◽  
Melani Martín de Hijas-Villalba ◽  
Marta Vázquez-Gómez ◽  
Samir Id Lahoucine

Abstract Current European regulations for autochthonous livestock breeds put a special emphasis on pedigree completeness, which requires laboratory paternity testing by genetic markers in most cases. This entails significant economic expenditure for breed societies and precludes other investments in breeding programs, such as genomic evaluation. Within this context, we developed paternity testing through low-coverage whole-genome data in order to reuse these data for genomic evaluation at no cost. Simulations relied on diploid genomes composed by 30 chromosomes (100 cM each) with 3,000,000 SNP per chromosome. Each population evolved during 1,000 non-overlapping generations with effective size 100, mutation rate 10–4, and recombination by Kosambi’s function. Only those populations with 1,000,000 ± 10% polymorphic SNP per chromosome in generation 1,000 were retained for further analyses, and expanded to the required number of parents and offspring. Individuals were sequenced at 0.01, 0.05, 0.1, 0.5 and 1X depth, with 100, 500, 1,000 or 10,000 base-pair reads and by assuming a random sequencing error rate per SNP between 10–2 and 10–5. Assuming known allele frequencies in the population and sequencing error rate, 0.05X depth sufficed to corroborate the true father (85,0%) and to discard other candidates (96,3%). Those percentages increased up to 99,6% and 99,9% with 0,1X depth, respectively (read length = 10,000 bp; smaller read lengths slightly improved the results because they increase the number of sequenced SNP). Results were highly sensitive to biases in allele frequencies and robust to inaccuracies regarding sequencing error rate. Low-coverage whole-genome sequencing data could be subsequently integrated into genomic BLUP equations by appropriately constructing the genomic relationship matrix. This approach increased the correlation between simulated and predicted breeding values by 1.21% (h2 = 0.25; 100 parents and 900 offspring; 0.1X depth by 10,000 bp reads). Although small, this increase opens the door to genomic evaluation in local livestock breeds.


Sign in / Sign up

Export Citation Format

Share Document