Biodiversity at disequilibrium: updating conservation strategies in cities

Author(s):  
Rong Wang ◽  
Qi-Chong Zhu ◽  
Yuan-Ye Zhang ◽  
Xiao-Yong Chen
2020 ◽  
Vol 642 ◽  
pp. 163-177 ◽  
Author(s):  
Y Niella ◽  
AF Smoothey ◽  
V Peddemors ◽  
R Harcourt

In the face of accelerating climate change, conservation strategies will need to consider how marine animals deal with forecast environmental change as well as ongoing threats. We used 10 yr (2009-2018) of data from commercial fisheries and a bather protection program along the coast of New South Wales (NSW), southeastern Australia, to investigate (1) spatial and temporal patterns of occurrence in bull sharks and (2) environmental factors affecting bull shark occurrence along the coast of NSW. Predicted future distribution for this species was modelled for the forecast strengthening East Australian Current. Bull sharks were mostly harvested in small to larger estuaries, with average depth and rainfall responsible for contrasting patterns for each of the fisheries. There was an increase in the occurrence of bull sharks over the last decade, particularly among coastal setline fisheries, associated with seasonal availability of thermal gradients >22°C and both westward and southward coastal currents stronger than 0.15 and 0.60 m s-1, respectively, during the austral summer. Our model predicts a 3 mo increase in the availability of favourable water temperatures along the entire coast of NSW for bull sharks by 2030. This coastline provides a uniquely favourable topography for range expansion in the face of a southerly shift of warmer waters, and habitat is unlikely to be a limiting factor for bull sharks in the future. Such a southerly shift in distribution has implications for the management of bull sharks both in commercial fisheries and for mitigation of shark-human interactions.


2014 ◽  
Vol 21 (6) ◽  
pp. 750-757
Author(s):  
Yu Yanbo ◽  
Wang Qunliang ◽  
Kell Shelagh ◽  
Maxted Nigel ◽  
V. Ford-Lloyd Brian ◽  
...  

2012 ◽  
Vol 30 (3) ◽  
pp. 285 ◽  
Author(s):  
Chang-Lin FENG ◽  
Zhen-Hai DENG ◽  
Dao-Xiong CAI ◽  
Tian-Gui WU ◽  
Hong-Yan JIA ◽  
...  

2020 ◽  
Author(s):  
Constance Fastré ◽  
Willem-Jan van Zeist ◽  
J. Watson ◽  
Piero Visconti

Author(s):  
Janet Nackoney ◽  
Jena Hickey ◽  
David Williams ◽  
Charly Facheux ◽  
Takeshi Furuichi ◽  
...  

The endangered bonobo (Pan paniscus), endemic to the Democratic Republic of Congo (DRC), is threatened by hunting and habitat loss. Two recent wars and ongoing conflicts in the DRC greatly challenge conservation efforts. This chapter demonstrates how spatial data and maps are used for monitoring threats and prioritizing locations to safeguard bonobo habitat, including identifying areas of highest conservation value to bonobos and collaboratively mapping community-based natural resource management (CBNRM) zones for reducing deforestation in key corridor areas. We also highlight the development of a range-wide model that analysed a variety of biotic and abiotic variables in conjunction with bonobo nest data to map suitable habitat. Approximately 28 per cent of the range was predicted suitable; of that, about 27.5 per cent was located in official protected areas. These examples highlight the importance of employing spatial data and models to support the development of dynamic conservation strategies that will help strengthen bonobo protection. Le bonobo en voie de disparition (Pan paniscus), endémique à la République Démocratique du Congo (DRC), est menacé par la chasse et la perte de l’habitat. Deux guerres récentes et les conflits en cours dans le DRC menacent les efforts de conservation. Ici, nous montrons comment les données spatiales et les cartes sont utilisées pour surveiller les menaces et prioriser les espaces pour protéger l’habitat bonobo, inclut identifier les zones de plus haute valeur de conservation aux bonobos. En plus, la déforestation est réduite par une cartographie collaborative communale de gestion de ressources dans les zones de couloirs essentiels. Nous soulignons le développement d’un modèle de toute la gamme qui a analysé un variété de variables biotiques et abiotiques en conjonction avec les données de nid bonobo pour tracer la carte d’un habitat adéquat. Environ 28 per cent de la gamme est prédit adéquat; de cela, environ 27.5 per cent est dans une zone officiellement protégée. Ces exemples soulignent l’importance d’utiliser les données spatiales et les modèles pour soutenir le développement de stratégies de conservations dynamiques qui aideront à renforcer la protection des bonobos.


Author(s):  
Richard D. Weir ◽  
Trevor A. Kinley ◽  
Richard W. Klafki ◽  
Clayton D. Apps

This chapter is based on ecological information on 82 radio-tagged badgers (39 F, 43 M) among three study populations in British Columbia, Canada between 1996 and 2010, data that were collected to learn more about the ecology of badgers and consider how variation in their ecology might inform regional conservation strategies. The widely spaced, lower density prey and distribution of soil deposits suitable for digging in British Columbia likely required badgers to use substantially larger areas, relative to the core range, in which to acquire sufficient energy to survive and reproduce. Strikes from automobiles were the primary cause of death among all radio-tagged badgers and this source of mortality is pervasive throughout the limited distribution of badgers in British Columbia. Despite their potential for high fecundity, populations of badgers in British Columbia likely remain at considerable risk compared to those in the core of the species’ range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Seok Kim ◽  
Kevin J. Roe

AbstractDetailed information on species delineation and population genetic structure is a prerequisite for designing effective restoration and conservation strategies for imperiled organisms. Phylogenomic and population genomic analyses based on genome-wide double digest restriction-site associated DNA sequencing (ddRAD-Seq) data has identified three allopatric lineages in the North American freshwater mussel genus Cyprogenia. Cyprogenia stegaria is restricted to the Eastern Highlands and displays little genetic structuring within this region. However, two allopatric lineages of C. aberti in the Ozark and Ouachita highlands exhibit substantial levels (mean uncorrected FST = 0.368) of genetic differentiation and each warrants recognition as a distinct evolutionary lineage. Lineages of Cyprogenia in the Ouachita and Ozark highlands are further subdivided reflecting structuring at the level of river systems. Species tree inference and species delimitation in a Bayesian framework using single nucleotide polymorphisms (SNP) data supported results from phylogenetic analyses, and supports three species of Cyprogenia over the currently recognized two species. A comparison of SNPs generated from both destructively and non-destructively collected samples revealed no significant difference in the SNP error rate, quality and amount of ddRAD sequence reads, indicating that nondestructive or trace samples can be effectively utilized to generate SNP data for organisms for which destructive sampling is not permitted.


Sign in / Sign up

Export Citation Format

Share Document