scholarly journals Driver’s views on driverless vehicles: Public perspectives on defining and using autonomous cars

2021 ◽  
Vol 11 ◽  
pp. 100446
Author(s):  
Christophe O. Schneble ◽  
David M. Shaw
Author(s):  
Pierre-Loïc Garoche

The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. This book provides control engineers and computer scientists with an introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. The book provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. It presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.


Author(s):  
Wulf Loh ◽  
Janina Loh

In this chapter, we give a brief overview of the traditional notion of responsibility and introduce a concept of distributed responsibility within a responsibility network of engineers, driver, and autonomous driving system. In order to evaluate this concept, we explore the notion of man–machine hybrid systems with regard to self-driving cars and conclude that the unit comprising the car and the operator/driver consists of such a hybrid system that can assume a shared responsibility different from the responsibility of other actors in the responsibility network. Discussing certain moral dilemma situations that are structured much like trolley cases, we deduce that as long as there is something like a driver in autonomous cars as part of the hybrid system, she will have to bear the responsibility for making the morally relevant decisions that are not covered by traffic rules.


Author(s):  
Annabelle Cumyn ◽  
Roxanne Dault ◽  
Adrien Barton ◽  
Anne-Marie Cloutier ◽  
Jean-François Ethier

A survey was conducted to assess citizens, research ethics committee members, and researchers’ attitude toward information and consent for the secondary use of health data for research within learning health systems (LHSs). Results show that the reuse of health data for research to advance knowledge and improve care is valued by all parties; consent regarding health data reuse for research has fundamental importance particularly to citizens; and all respondents deemed important the existence of a secure website to support the information and consent processes. This survey was part of a larger project that aims at exploring public perspectives on alternate approaches to the current consent models for health data reuse to take into consideration the unique features of LHSs. The revised model will need to ensure that citizens are given the opportunity to be better informed about upcoming research and have their say, when possible, in the use of their data.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 420
Author(s):  
Stefano Quer ◽  
Luz Garcia

Research on autonomous cars has become one of the main research paths in the automotive industry, with many critical issues that remain to be explored while considering the overall methodology and its practical applicability. In this paper, we present an industrial experience in which we build a complete autonomous driving system, from the sensor units to the car control equipment, and we describe its adoption and testing phase on the field. We report how we organize data fusion and map manipulation to represent the required reality. We focus on the communication and synchronization issues between the data-fusion device and the path-planner, between the CPU and the GPU units, and among different CUDA kernels implementing the core local planner module. In these frameworks, we propose simple representation strategies and approximation techniques which guarantee almost no penalty in terms of accuracy and large savings in terms of memory occupation and memory transfer times. We show how we adopt a recent implementation on parallel many-core devices, such as CUDA-based GPGPU, to reduce the computational burden of rapidly exploring random trees to explore the state space along with a given reference path. We report on our use of the controller and the vehicle simulator. We run experiments on several real scenarios, and we report the paths generated with the different settings, with their relative errors and computation times. We prove that our approach can generate reasonable paths on a multitude of standard maneuvers in real time.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seiji Nishiwaki

AbstractSophisticated non-mechanical technology for LIDARs is needed to realize safe autonomous cars. We have confirmed the operating principle of a non-mechanical LIDAR by combining concentric circular-grating couplers (CGCs) with a coaxially aligned rod lens. Laser light incident vertically on the center of the inner CGC along the center axis of the lens is radiated from the outer CGC and passes through the side surface of the lens. It is converted to a parallel beam that scans in two axes by applying voltages to two area-segmented electrode layers sandwiching the CGCs and a liquid crystal layer formed on the CGCs. We have demonstrated scanning whose motion ranges were 360 degrees horizontally and 10° vertically. A beam with a spread angle of 0.3° × 0.8° at a minimum swept vertically up to a frequency of 100 Hz and ten equally spaced beams scanned rotationally with a 6-degree cycle variation of spread of between 0.8° and 3.5°.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shweta Banerjee

PurposeThere are ethical, legal, social and economic arguments surrounding the subject of autonomous vehicles. This paper aims to discuss some of the arguments to communicate one of the current issues in the rising field of artificial intelligence.Design/methodology/approachMaking use of widely available literature that the author has read and summarised showcasing her viewpoints, the author shows that technology is progressing every day. Artificial intelligence and machine learning are at the forefront of technological advancement today. The manufacture and innovation of new machines have revolutionised our lives and resulted in a world where we are becoming increasingly dependent on artificial intelligence.FindingsTechnology might appear to be getting out of hand, but it can be effectively used to transform lives and convenience.Research limitations/implicationsFrom robotics to autonomous vehicles, countless technologies have and will continue to make the lives of individuals much easier. But, with these advancements also comes something called “future shock”.Practical implicationsFuture shock is the state of being unable to keep up with rapid social or technological change. As a result, the topic of artificial intelligence, and thus autonomous cars, is highly debated.Social implicationsThe study will be of interest to researchers, academics and the public in general. It will encourage further thinking.Originality/valueThis is an original piece of writing informed by reading several current pieces. The study has not been submitted elsewhere.


Sign in / Sign up

Export Citation Format

Share Document