How a conductive baffle improves melting characteristic and heat transfer in a rectangular cavity filled with gallium

2020 ◽  
Vol 16 ◽  
pp. 100453
Author(s):  
Rouhollah Yadollahi Farsani ◽  
Amirhoushang Mahmoudi ◽  
Mehdi Jahangiri
1967 ◽  
Vol 89 (1) ◽  
pp. 103-108 ◽  
Author(s):  
A. F. Emery ◽  
J. A. Sadunas ◽  
M. Loll

The heat transfer and pressure distribution in a rectangular cavity in a Mach 3 flow were investigated for a rectangular and an inverted-wedge recompression step. Noticeable differences between the results for the two steps were found in the recovery factors, but no real differences were detected in the heat-transfer coefficients or the velocity profiles. Heat-transfer coefficients in the cavity were determined by transient techniques and were found to range from 50 to 110 percent of the flat-plate value just prior to the expansion step.


Author(s):  
Gustavo Gutierrez ◽  
Ezequiel Medici

The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.


1984 ◽  
Vol 27 (233) ◽  
pp. 2440-2448 ◽  
Author(s):  
Hideo INABA ◽  
Takeyuki FUKUDA ◽  
Nobuhiro SEKI ◽  
Shoichiro FUKUSAKO

1988 ◽  
Vol 110 (2) ◽  
pp. 350-357 ◽  
Author(s):  
T. G. Karayiannis ◽  
J. D. Tarasuk

Natural convection inside a rectangular cavity with different temperature boundary conditions on the cold top plate was studied using a Mach-Zehnder interferometer for θ = 15, 45, and 60 deg to the horizontal. At θ = 60 deg coupling with external forced convection and non-coupled heat transfer from a cavity with an isothermal top plate was studied. In all experiments the bottom hot plate was isothermal. The Rayleigh number Ra was varied from subcritical to 6×105 and the cavity aspect ratio ARx, from 6.68 to 33.4. The Reynolds number of the external forced flow Redh was constant and approximately equal to 5.8×104. It was found that for Ra ≲ 3×104 the differing thermal boundary conditions at the top plate did not affect the local or average heat transfer rates from the cavity. For Ra ≳ 3×104 coupling at the top plate compared to the non-coupled case resulted not only in a reduction in the variation of the local heat transfer rates at the cold plate, but also in a significant reduction in the variation of the average transfer rates from hot and cold plates of the cavity. Forced convection at the top plate as compared to natural convection resulted only in a small reduction in the heat transfer coefficient at the cold plate. Correlation equations for coupled and noncoupled average heat transfer rates are presented.


Sign in / Sign up

Export Citation Format

Share Document