Preparation and characterization of bio-functionalized iron oxide nanoparticles for biomedical application

2010 ◽  
Vol 519 (3) ◽  
pp. 1219-1223 ◽  
Author(s):  
Bharat Bajaj ◽  
B.D. Malhotra ◽  
Sunju Choi
2015 ◽  
Vol 1718 ◽  
pp. 3-7
Author(s):  
Stephany Herrera-Posada ◽  
Barbara O. Calcagno ◽  
Aldo Acevedo

ABSTRACTLiquid crystalline elastomers (LCEs) are materials that reveal unusual mechanical, optical and thermal properties due to their molecular orientability characteristic of low molar mass liquid crystals while maintaining the mechanical elasticity distinctive of rubbers. As such, they are considered smart shape-changing responsive systems. In this work, we report on the preparation of magnetic sensitized nematic LCEs using iron oxide nanoparticles with loadings of up to 0.7 wt%. The resultant thermal and mechanical properties were characterized by differential scanning calorimetry, expansion/contraction experiments and extensional tests. The magnetic actuation ability was also evaluated for the neat elastomer and the composite with 0.5 wt% magnetic content, finding reversible contractions of up to 23% with the application of alternating magnetic fields (AMFs) of up to 48 kA/m at 300 kHz. Thus, we were able to demonstrate that the inclusion of magnetic nanoparticles yields LCEs with adjustable properties that can be tailored by changing the amount of particles embedded in the elastomeric matrix, which can be suitable for applications in actuation, sensing, or as smart substrates.


2018 ◽  
Vol 9 (37) ◽  
pp. 4642-4650 ◽  
Author(s):  
Thomas Blin ◽  
Antoine Niederberger ◽  
Lazhar Benyahia ◽  
Jérôme Fresnais ◽  
Véronique Montembault ◽  
...  

Preparation and characterization of stimuli-sensitive hybrid double-crosslinked hydrogels based on iron oxide nanoparticles as the nano-crosslinkers and a difuran-functionalized PEO as the diene partner for the thermoreversible Diels–Alder reaction.


2015 ◽  
Vol 160 ◽  
pp. 522-525 ◽  
Author(s):  
Simone F. Medeiros ◽  
João O.C. Filizzola ◽  
Victor F.M. Fonseca ◽  
Paulo F.M. Oliveira ◽  
Taline M. Silva ◽  
...  

2014 ◽  
Vol 64 (3) ◽  
pp. 344-348
Author(s):  
Yousaf IQBAL ◽  
Ilsu RHEE ◽  
Hongsub BAE ◽  
Junghyun BYUN ◽  
Taeyoung JUNG ◽  
...  

2019 ◽  
Vol 31 (8) ◽  
pp. 1719-1723
Author(s):  
Nguyen Thi Thanh Thuy ◽  
Le Duc Anh ◽  
Nguyen Huu Tri ◽  
Cu Van Hoang ◽  
Nguyen Anh Nhut

The PEG-coated iron oxide nanoparticles (Fe3O4 NPs-PEG) was synthesized by coprecipitation and ultrasonication method. X-ray diffraction results exhibited that the average size of Fe3O4 NPs-PEG was 19.10 nm, which was further confirmed in TEM imaging. In addition, sonication time and curcumin concentration were studied to evaluate the efficiency of loading curcumin onto Fe3O4 NPs-PEG. Further, statistical optimization using response surface methodology (RSM) has shown curcumin concentration (0,01% w/v) and sonication time (21 min) for maximal curcumin loading (0.37 mg/g). Along with the magnetization studies, the immobilization of curcumin onto the Fe3O4 NPs-PEG was characterized by UV, FTIR and SEM. The results showed that the curcumin loaded PEG coated iron oxide nanoparticles could potentially be used for magnetically target drug delivery.


Sign in / Sign up

Export Citation Format

Share Document