Influences of oxygen gas flow rate on electrical properties of Ga-doped ZnO thin films deposited on glass and sapphire substrates

2014 ◽  
Vol 559 ◽  
pp. 78-82 ◽  
Author(s):  
Hisao Makino ◽  
Huaping Song ◽  
Tetsuya Yamamoto
2019 ◽  
Vol 27 (07) ◽  
pp. 1950183
Author(s):  
AREZOO MOSHABAKI ◽  
ERFAN KADIVAR ◽  
ALIREZA FIROOZIFAR

Indium tin oxide (ITO) thin films have been deposited on glass substrate by DC magnetron sputtering in the presence and absence of oxygen gas flux. Subsequently, some of the samples have been annealed in vacuum or air oven at [Formula: see text]C for 20[Formula: see text]min. The optical, surface morphology and electrical characteristics have been examined by spectrophotometry, atomic force microscope, field emission scanning electron microscopy, four-point probe and Hall effect measurements as a function of argon gas flux, film thickness, deposition rate and substrate temperature. Experimental results indicate that the surface roughness increases by decreasing the argon gas flow rate and deposition rate. The result revealed that the lowest surface roughness of 1.07[Formula: see text]nm is achieved at zero oxygen gas flux, argon gas flow 20[Formula: see text]sccm and deposition rate [Formula: see text] Å/s. We have found that the maximum value of merit figure is related to the argon gas flow rate 30[Formula: see text]sccm. In order to obtain a very smooth surface, finally, the ITO thin films have been processed with alumina polishing solution by ultrasonic method. Our experimental results indicate that surface roughness decreases and merit figure increases after polishing process.


JOM ◽  
2012 ◽  
Vol 64 (4) ◽  
pp. 526-530 ◽  
Author(s):  
Sudhakar Shet ◽  
Le Chen ◽  
Houwen Tang ◽  
Ravindra Nuggehalli ◽  
Heli Wang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1635
Author(s):  
Md. Akhtaruzzaman ◽  
Md. Shahiduzzaman ◽  
Nowshad Amin ◽  
Ghulam Muhammad ◽  
Mohammad Aminul Islam ◽  
...  

Tungsten disulfide (WS2) thin films were deposited on soda-lime glass (SLG) substrates using radio frequency (RF) magnetron sputtering at different Ar flow rates (3 to 7 sccm). The effect of Ar flow rates on the structural, morphology, and electrical properties of the WS2 thin films was investigated thoroughly. Structural analysis exhibited that all the as-grown films showed the highest peak at (101) plane corresponds to rhombohedral phase. The crystalline size of the film ranged from 11.2 to 35.6 nm, while dislocation density ranged from 7.8 × 1014 to 26.29 × 1015 lines/m2. All these findings indicate that as-grown WS2 films are induced with various degrees of defects, which were visible in the FESEM images. FESEM images also identified the distorted crystallographic structure for all the films except the film deposited at 5 sccm of Ar gas flow rate. EDX analysis found that all the films were having a sulfur deficit and suggested that WS2 thin film bears edge defects in its structure. Further, electrical analysis confirms that tailoring of structural defects in WS2 thin film can be possible by the varying Ar gas flow rates. All these findings articulate that Ar gas flow rate is one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties, and structural properties of WS2 thin film. Finally, the simulation study validates the experimental results and encourages the use of WS2 as a buffer layer of CdTe-based solar cells.


Sign in / Sign up

Export Citation Format

Share Document