Microclimate conditions alter Ixodes scapularis (Acari: Ixodidae) overwinter survival across climate gradients in Maine, United States

2021 ◽  
pp. 101872
Author(s):  
Michelle R. Volk ◽  
Charles B. Lubelczyk ◽  
Jason C. Johnston ◽  
Danielle L. Levesque ◽  
Allison M. Gardner
Author(s):  
T E Zembsch ◽  
X Lee ◽  
G M Bron ◽  
L C Bartholomay ◽  
S M Paskewitz

Abstract Borrelia burgdorferi, the spirochete that causes Lyme disease, is endemic and widespread in Wisconsin. Research in the northeastern United States has revealed a positive association between Babesia microti, the main pathogen that causes babesiosis in humans, and Bo. burgdorferi in humans and in ticks. This study was conducted to examine associations between the disease agents in the Upper midwestern United States. Ixodes scapularis Say nymphs (N = 2,858) collected between 2015 and 2017 from nine locations in Wisconsin were tested for Babesia spp. and Borrelia spp. using real-time PCR. Two species of Babesia were detected; Ba. microti and Babesia odocoilei (a parasite of members of the family Cervidae). Prevalence of infection at the nine locations ranged from 0 to 13% for Ba. microti, 11 to 31% for Bo. burgdorferi sensu stricto, and 5.7 to 26% for Ba. odocoilei. Coinfection of nymphs with Bo. burgdorferi and Ba. odocoilei was detected in eight of the nine locations and significant positive associations were observed in two of the eight locations. The prevalence of nymphal coinfection with both and Bo. burgdorferi and Ba. microti ranged from 0.81 to 6.5%. These two pathogens were significantly positively associated in one of the five locations where both pathogens were detected. In the other four locations, the observed prevalence of coinfection was higher than expected in all but one site-year. Clinics and healthcare providers should be aware of the association between Ba. microti and Bo. burgdorferi pathogens when treating patients who report tick bites.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen L. Knapp ◽  
Nancy A. Rice

Borrelia burgdorferi, the causative agent of Lyme disease, andBabesia microti, a causative agent of babesiosis, are increasingly implicated in the growing tick-borne disease burden in the northeastern United States. These pathogens are transmitted via the bite of an infected tick vector,Ixodes scapularis, which is capable of harboring and inoculating a host with multiple pathogens simultaneously. Clinical presentation of the diseases is heterogeneous and ranges from mild flu-like symptoms to near-fatal cardiac arrhythmias. While the reason for the variability is not known, the possibility exists that concomitant infection with bothB. burgdorferiandB. microtimay synergistically increase disease severity. In an effort to clarify the current state of understanding regarding coinfection withB. burgdorferiandB. microti, in this review, we discuss the geographical distribution and pathogenesis of Lyme disease and babesiosis in the United States, the immunological response of humans toB. burgdorferiorB. microtiinfection, the existing knowledge regarding coinfection disease pathology, and critical factors that have led to ambiguity in the literature regarding coinfection, in order to eliminate confusion in future experimental design and investigation.


Author(s):  
Yuting Dong ◽  
Zheng Huang ◽  
Yong Zhang ◽  
Yingying X.G. Wang ◽  
Yang La

Lyme disease, recognized as one of the most important vector-borne diseases worldwide, has been increasing in incidence and spatial extend in United States. In the Northeast and Upper Midwest, Lyme disease is transmitted by Ixodes scapularis. Currently, many studies have been conducted to identify factors influencing Lyme disease risk in the Northeast, however, relatively few studies focused on the Upper Midwest. In this study, we explored and compared the climatic and landscape factors that shape the spatial patterns of human Lyme cases in these two regions, using the generalized linear mixed models. Our results showed that climatic variables generally had opposite correlations with Lyme disease risk, while landscape factors usually had similar effects in these two regions. High precipitation and low temperature were correlated with high Lyme disease risk in the Upper Midwest, while with low Lyme disease risk in the Northeast. In both regions, size and fragmentation related factors of residential area showed positive correlations with Lyme disease risk. Deciduous forests and evergreen forests had opposite effects on Lyme disease risk, but the effects were consistent between two regions. In general, this study provides new insight into understanding the differences of risk factors of human Lyme disease risk in these two regions.


2006 ◽  
Vol 43 (2) ◽  
pp. 166-176 ◽  
Author(s):  
M. A. Diuk-Wasser ◽  
A. G. Gatewood ◽  
M. R. Cortinas ◽  
S. Yaremych-Hamer ◽  
J. Tsao ◽  
...  

2019 ◽  
Vol 57 (1) ◽  
pp. 304-307 ◽  
Author(s):  
Ryan T Larson ◽  
Xia Lee ◽  
Tela Zembsch ◽  
Gebbiena M Bron ◽  
Susan M Paskewitz

Abstract The blacklegged tick, Ixodes scapularis Say, is the primary Lyme disease vector in the eastern United States. Both immature stages of I. scapularis take blood meals from mice belonging to the genus Peromyscus. Mice are active during the night and spend the majority of diel periods in nests. Thus, immature I. scapularis have a greater opportunity to drop from Peromyscus hosts while in nests compared with the forest floor. Here, we collected 11 Peromyscus nests during a 3-mo period during which the immature I. scapularis are known to be active. We then examined nesting materials for the presence of I. scapularis. Immature I. scapularis were detected in 64% of Peromyscus nests examined. Additionally, 55% of the nests contained at least one Dermacentor variabilis Say larva. Eighty-seven percent of all larval ticks found within nests were blood-fed. Because Peromyscus spp. are highly competent reservoirs of numerous tick-borne pathogens, the ticks that detach in their nests may be important for the maintenance of tick-borne diseases. However, further studies are needed to determine the fate of the I. scapularis that detach in Peromyscus nests.


Author(s):  
James L Occi ◽  
Victoria M Campbell ◽  
Dina M Fonseca ◽  
Richard G Robbins

Abstract Ixodes scapularis Say is a three-host tick that has been recorded feeding on over 150 different species of terrestrial vertebrates (mammals, birds, and reptiles). This tick is found throughout the northeastern, coastal southeastern, and upper midwestern United States and is considered the most significant vector of tick-borne pathogens to humans in North America. Despite its ubiquity and broad host range, I. scapularis previously has not been reported feeding on bats (Chiroptera). However, during 2019 and 2020, larvae and nymphs of I. scapularis were recovered from big brown bats, Eptesicus fuscus (Palisot de Beauvois), at four locations in rural New York State, USA. All Ixodes infested bats were injured and found on the ground; therefore, parasitism by I. scapularis was likely opportunistic. Nonetheless, the large number of pathogens known to be associated with bats and the frequency with which I. scapularis bites people suggest that this host–tick relationship is of at least potential epidemiological significance.


Sign in / Sign up

Export Citation Format

Share Document