Horizontal directional drilling pulling forces prediction methods – A critical review

2017 ◽  
Vol 69 ◽  
pp. 85-93 ◽  
Author(s):  
Liangxue Cai ◽  
Guangli Xu ◽  
Maria Anna Polak ◽  
Mark Knight
Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1112 ◽  
Author(s):  
Rafał Wiśniowski ◽  
Krzysztof Skrzypaszek ◽  
Paweł Łopata ◽  
Grzegorz Orłowicz

An increase in demand for energy natural resources has stimulated the development of gas pipeline networks in Europe, as well as globally. Also, in Poland in recent years there has been a significant increase in natural gas consumption. Therefore, it is necessary to build new pipelines networks using dig and no–dig techniques. Horizontal Directional Drilling is one of the most popular trenchless technologies. The aim of this article is to present a new approach in the design of HDD trajectories in two–dimensional space (2D). A review of the trajectories used so far has been provided, offering calculation algorithms to determine their well path. Then, the original catenary method is proposed, taking into account natural deflection of casing pipes. Applicable formulas and computational algorithms have been given, together with a computational example which enables comparison of the classical design methodology with the new one. According to the authors, due to natural stress distribution, the catenary method allows the use of smaller pulling forces during installation and ensures longer pipeline life. Therefore, it should be used in industrial practice as an alternative to current designing methods.


2004 ◽  
Vol 41 (4) ◽  
pp. 672-685 ◽  
Author(s):  
Michael E Baumert ◽  
Erez N Allouche ◽  
Ian D Moore

Installation loads during 19 commercial horizontal directional drilling (HDD) installations were monitored using new in-hole monitoring cell technology. Fifteen of these installations were part of an 8.3 km section of 203 mm diameter by 4 mm wall thickness steel gas distribution line. The predominant soil type was silty clay, and similar construction practices were employed for all installations. The resistance to pipe advancement within the bore was found to increase in an approximately linear manner, varying from 0.20 to 0.31 kN/m, with a mean of 0.26 kN/m and standard deviation σx = 0.03 kN/m. Local peaks caused by borehole curvature or borehole anomalies were found to dissipate, usually within 10 m, before the underlying linear trend resumed. The remaining four installations were evaluated to determine the relationship between measured pull head load and borehole pressure. The correlation observed provides new insight into the factors that contribute to pulling forces during HDD installations. Based on the findings, a conceptual framework is proposed for an improved HDD design model. The framework outlines two development stages: stage 1, based on tabulated measurements of pulling force per length of pipe inserted; and stage 2, involving significant modifications to an existing prediction model to better represent field conditions.Key words: pipelines, tensile loads, mud pressure, directional drilling, load monitoring, pressure monitoring.


2015 ◽  
pp. 91-96
Author(s):  
I. E. Kiryanov ◽  
Yu. D. Zemenkov ◽  
S. M. Dorofeev ◽  
V. S. Toropov

On the basis of analyzing the characteristics of used materials and the parameters of trenchless transitions profiles was developed emergency response, including several schemes of release a pipe jammed in the hole during the pipeline pulling in the pipeline construction by horizontal directional drilling. Proposed schemes applicability analyzed for trenchless construction real conditions.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hailin Zhang ◽  
João Antonangelo ◽  
Chad Penn

AbstractPortable X-ray fluorescence (pXRF) spectrometer allows fast in-situ elemental determination without wet digestion for soils or geological materials, but the use of XRF on wet materials is not well documented. Our objective was to develop a rapid field method using pXRF to measure metals in the residues from horizontal directional drilling (HDD) operations so that proper disposal decisions can be made in-situ. To establish the procedure, we spiked soil samples with 4 concentrations of Cr, Ni, Cu, Zn, As, Cd, and Pb up to 1000 mg kg−1, and then the metal concentrations were determined by wet chemical method after drying and acid digestion (standard method), and by pXRF, also at laboratory conditions, after drying and at two different moisture conditions. The measurements by pXRF and standard method after drying and after removal of excess water (AREW) were highly correlated with slopes ranging from 0.83 ± 0.01 to 1.08 ± 0.01 (P < 0.001) for all metals. The relationship was better AREW than the saturated paste without removal of excess water and the moisture content affected only the accuracy of As, Cd, and Pb. The procedure established was successfully used for HDD residues collected from 26 states of US with moisture content ranging from 14 to 83% AREW. The pXRF was proven to be a reliable tool for fast detection of common metals in dried soils and HDD residues, and samples containing < 30% moisture content without needing to correct for moisture. If the moisture is > 30%, excess water in samples need to be removed with a commercially available filter press to achieve high accuracy. The developed procedures reduce time of metal detection from days to about an hour which allows drilling operators to make quick decisions on soil or HDD disposal.


2008 ◽  
Vol 64 (3) ◽  
pp. 272-282 ◽  
Author(s):  
Hiroyasu ISHII ◽  
Kanji HIGAKI ◽  
Shunsuke KAWAI ◽  
Shinji MIWA ◽  
Ryonosuke KOIZUMI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document