Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways

2018 ◽  
Vol 71 ◽  
pp. 605-622 ◽  
Author(s):  
Baofu Duan ◽  
Hualin Xia ◽  
Xuxu Yang
2019 ◽  
Vol 11 (10) ◽  
pp. 2758
Author(s):  
Gang Liu ◽  
Fengshan Ma ◽  
Haijun Zhao ◽  
Guang Li ◽  
Jiayuan Cao ◽  
...  

Cracks are critical for the deformation and failure of rock masses, but the effects of real cracks are rarely considered when evaluating the stability and safety of practical engineering. This paper presents a study on the application of fractures in the Sanshandao Gold Mine. Field investigation and statistical analysis methods were adopted to obtain the distribution laws of the cracks. Laboratory tests, MATLAB programming, and simulation using the software, GDEM (Gdem Technology, Beijing, China, Co., Ltd.), were employed to study the mechanical behaviors of rock masses with real fractures after excavation. The main results are as follows: (1) Three sets of highly discrete cracks were developed in the study area. Their inclination and dip can be approximately considered to follow a Gaussian distribution or uniform distribution. They had close ties to the three faults developed in the mining area. (2) Compared with the model that did not consider cracks and the model processed by the equivalence idea, the surrounding rock deformation caused by excavation of the model that considered real cracks was larger than that of the former and smaller than that of the latter. However, its influence range was larger than that of the other two models. The results show that it is reasonable to use three sets of discrete cracks to characterize the fracture distribution of the surrounding rock. In the evaluation of roadway stability, it is not advisable to use the equivalence method to deal with all the cracks. Considering a part of the cracks that are compatible with the size of the calculation model, a relatively accurate evaluation can be obtained in terms of the deformation, failure, and permeability changes of the surrounding rock.


2021 ◽  
Author(s):  
Long Tan ◽  
Wei Xiang

<p>In the pre-feasibility study stage, only a small amount of borehole data can be obtained. Since the available geological information is insufficient, the engineering geological conditions of the project can only be preliminarily and approximately estimated during this stage. In this study, we attempt to seek a method to make a preliminary analysis and evaluation of the stability of the surrounding rock masses of an underground rock carven project, which makes full and optimum use of the limited borehole data to accomplish the assessment of the investigated site. The basic information on rock fractures is extracted from the borehole Television logging data and the fracture extension directions are also determined. Providing that the cracks detected in the borehole would extend to the cavern area, the cracks with appropriate direction, larger width and larger hydraulic conductivity can be selected. These selected cracks are considered in the numerical model established using ANSYS, and the stability of surrounding rock of cavern is analyzed under this situation. In the absence of large amount of borehole data, this method, which set up an extreme case, can be used to analyze possible failure of rock mass under extreme adverse conduction in advance. In general, the proposed method for stability analysis could contribute to the design and construction practice of a tunnel project constructed in fractured rock masses.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Guang-Xiang Xie ◽  
Anying Yuan ◽  
Lei Wang

The mechanism of force chain deflection and instability-caused disaster in the deep surrounding rock of large-scale stopes was examined in this study using theoretical analyses, laboratory experiments, PFC3D numerical simulations, and other comprehensive research methods based on a discrete element theory that included force chain research as the main line. The results indicated that the overburden strata of the stope presented an arched force chain in both the strike and the inclined direction of the working face. In addition, a force chain shell composed of strong chains similar to “ellipsoid” in shape had been formed in the overburden strata space of the entire stope. The main mechanical characteristics of the force chain shell were as follows: the strength levels of the force chains within the shell were the largest; the strength levels of the force chains inside and outside the shell were relatively low and had evolved with the advancement of the working face; the directions of the force chains in different areas of the surrounding rock masses of the stope were deflected, forming an anisotropic characteristic with a certain deflection angle which was distributed in the vertical direction at the shell base; the force chains at the shell shoulder were angled in the horizontal direction, and the force chain at the shell top had an obvious horizontal direction; finally, the strong chain clusters of the surrounding rock masses of the stope formed a force chain shell in the stope space, and the stress shell was the macroscopic embodiment of the force transference in the force chain shell formed by the force chain clusters, which revealed not only the mechanical mechanism of the force chain shell formed by the surrounding rock but also the relationship between the macro stress shell and the stress chain shell. The stability of the shell determines the stability of the surrounding rock, and the instability of the shell will lead to dynamic disasters such as strong dynamic pressure or rock burst.


2012 ◽  
Vol 170-173 ◽  
pp. 1726-1730
Author(s):  
Jin Sheng Lei ◽  
Zheng Tao Jin ◽  
Lei Bao ◽  
Liang Wen

In the design of underground engineering analogy, the division of rock mass level and the selection of support parameters are affected by many uncertain factors which share characteristics of random and obscurity. This paper lays the foundation of the classification of joint rock masses CSIR and supporting parameters recommended values, selecting several key factors affecting the stability of surrounding rock masses, and employing the methods of fuzzy comprehensive evaluation to divide the underground cavern, and having put forward the reasonable supporting parameters. The results show that the level of surrounding rock is the Ⅲ, meanwhile, it takes into account the proximity effects and designs the supporting parameters to the supports, as a result, this method has achieved comparatively reasonable and economic effects in the practical application.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


2011 ◽  
Vol 368-373 ◽  
pp. 2411-2416
Author(s):  
Jian Ping Han ◽  
Hai Peng Liu

Temporary or permanent supports are necessary in underground construction for maintaining the stability and limiting the damage of surrounding rock. Due to the uncertainty of geological structure, the specificity of the underground environment as well as other factors, the quality and performance of supporting structure are often difficult to satisfy the design requirements, which not only seriously affects the normal construction and operation of mines but also has the potential threat to the safety of underground production. In order to investigate the influence of the unfavorable geologic environment on supporting concrete and evaluate the real performance of roadway supports of a mine, 17 typical projects were chosen and the strength of supporting concrete was detected by nondestructive drilling core method. The result shows that the strength is widely less than the design value. Furthermore, 4 projects of them were investigated by the ground penetrating radar (GPR) in order to evaluate the feasibility of GPR in the performance investigation of the roadway supports of a mine. The results indicate that ground penetrating radar is capable of measuring the thickness of the support, the distribution of rebars and the defects of the surrounding rock.


2013 ◽  
Vol 405-408 ◽  
pp. 402-405 ◽  
Author(s):  
Yun Jie Zhang ◽  
Tao Xu ◽  
Qiang Xu ◽  
Lin Bu

Based on the fluid-solid coupling theory, we study the stability of surrounding rock mass around underground oil storage in Huangdao, Shandong province, analyze the stress of the surrounding rock mass around three chambers and the displacement change of several key monitoring points after excavation and evaluate the stability of surrounding rock mass using COMSOL Multiphysics software. Research results show that the stress at both sides of the straight wall of cavern increases, especially obvious stress concentration forms at the corners of the cavern, and the surrounding rock mass moves towards the cavern after excavation. The stress and displacement of the surrounding rock mass will increase accordingly after setting the water curtains, but the change does not have a substantive impact on the stability of surrounding rock mass.


Sign in / Sign up

Export Citation Format

Share Document