3D face effects of tunnels misaligned with the principal directions of material and stress anisotropy

2022 ◽  
Vol 122 ◽  
pp. 104347
Author(s):  
Osvaldo P.M. Vitali ◽  
Tarcisio B. Celestino ◽  
Antonio Bobet
2014 ◽  
Vol 2 (2) ◽  
pp. SE105-SE115 ◽  
Author(s):  
Mehdi E. Far ◽  
Bob Hardage

Using a data set from the Marcellus Shale, we evaluated the advantages of multicomponent seismic data for fracture and anisotropy studies over conventional P-wave data. Using traveltime and amplitude analysis on pre- and poststack seismic data, we concluded that PS-waves can provide more accurate information about the location, orientation, and intensity of natural fractures and stress anisotropy than P-waves. Our analysis indicated that regional stress was the main cause of velocity anisotropy. Amplitude variation with offset and azimuth appeared to be more useful for fracture studies, whereas traveltime variations (especially PS-waves) provided a better indication of regional stress orientations. Principal directions for amplitudes and traveltimes of PP- and PS-waves were different. Misalignment of PP- and PS-waves principal directions suggested that the simplest, most realistic anisotropy model for the fractured Marcellus is monoclinic symmetry.


Author(s):  
Ingrid De Wolf ◽  
Ahmad Khaled ◽  
Martin Herms ◽  
Matthias Wagner ◽  
Tatjana Djuric ◽  
...  

Abstract This paper discusses the application of two different techniques for failure analysis of Cu through-silicon vias (TSVs), used in 3D stacked-IC technology. The first technique is GHz Scanning Acoustic Microscopy (GHz- SAM), which not only allows detection of defects like voids, cracks and delamination, but also the visualization of Rayleigh waves. GHz-SAM can provide information on voids, delamination and possibly stress near the TSVs. The second is a reflection-based photoelastic technique (SIREX), which is shown to be very sensitive to stress anisotropy in the Si near TSVs and as such also to any defect affecting this stress, such as delamination and large voids.


2021 ◽  
Vol 7 (3) ◽  
pp. 209-219
Author(s):  
Iris J Holzleitner ◽  
Alex L Jones ◽  
Kieran J O’Shea ◽  
Rachel Cassar ◽  
Vanessa Fasolt ◽  
...  

Abstract Objectives A large literature exists investigating the extent to which physical characteristics (e.g., strength, weight, and height) can be accurately assessed from face images. While most of these studies have employed two-dimensional (2D) face images as stimuli, some recent studies have used three-dimensional (3D) face images because they may contain cues not visible in 2D face images. As equipment required for 3D face images is considerably more expensive than that required for 2D face images, we here investigated how perceptual ratings of physical characteristics from 2D and 3D face images compare. Methods We tested whether 3D face images capture cues of strength, weight, and height better than 2D face images do by directly comparing the accuracy of strength, weight, and height ratings of 182 2D and 3D face images taken simultaneously. Strength, height and weight were rated by 66, 59 and 52 raters respectively, who viewed both 2D and 3D images. Results In line with previous studies, we found that weight and height can be judged somewhat accurately from faces; contrary to previous research, we found that people were relatively inaccurate at assessing strength. We found no evidence that physical characteristics could be judged more accurately from 3D than 2D images. Conclusion Our results suggest physical characteristics are perceived with similar accuracy from 2D and 3D face images. They also suggest that the substantial costs associated with collecting 3D face scans may not be justified for research on the accuracy of facial judgments of physical characteristics.


Sign in / Sign up

Export Citation Format

Share Document