A numerical study on the energy absorption of a bending-straightening energy absorber with large stroke

2018 ◽  
Vol 122 ◽  
pp. 30-41 ◽  
Author(s):  
Yao Yu ◽  
Guangjun Gao ◽  
Haipeng Dong ◽  
Weiyuan Guan ◽  
Jian Li
2013 ◽  
Vol 13 (06) ◽  
pp. 1350014 ◽  
Author(s):  
WENSU CHEN ◽  
HONG HAO

Blast-resistant structures are traditionally designed with solid materials of huge weight to resist blast loads. This not only increases the construction costs, but also undermines the operational performance. To overcome these problems, many researchers develop new designs with either new materials or new structural forms, or both to resist the blast loads. Friction damper, as a passive energy absorber, has been used in earthquake-resistant design to absorb vibration energy from cyclic loading. The use of friction damper in blast-resistant design to absorb high-rate impact and blast energy, however, has not been well explored. This study introduces a new sandwich panel equipped with rotational friction hinge device with spring (RFHDS) between the outer and inner plates to resist the blast loading. This device RFHDS, as a special sandwich core and energy absorber, consists of rotational friction hinge device (RFHD) and spring. The RFHD is used to absorb blast energy while the spring is used to restore the original shape of the panel. This paper studies the mechanism of RFHD by using theoretical derivation and numerical simulations to derive its equivalent force–displacement relation and study its energy absorption capacity. In addition, the energy absorption and blast loading resistance capacities of the sandwich panel equipped with RFHDS are numerically investigated by using Ls-Dyna. It is found that the proposed sandwich panel can recover, at least partially its original configuration after the loading and thus maintain its operational and blast-resistance capability after a blasting event. In order to maximize the performance of the proposed sandwich panel, parametric calculations are carried out to study the performance of RFHDS and the sandwich panels with RFHDS. The best performing sandwich panel with RFHDS in resisting blast loadings is identified. This sandwich panel configuration might be employed to mitigate blast loading effects in structural sandwich panel design.


Author(s):  
Mehmet Ali Güler ◽  
Muhammed Emin Cerit ◽  
Sinem Kocaoglan Mert ◽  
Erdem Acar

In this study, the energy absorption capacity of a front body of a bus during a frontal crash was investigated. The strength of the bus structure was examined by considering the ECE-R29 European regulation requirements. The nonlinear explicit finite element code LS-DYNA was used for the crash analyses. First, the baseline bus structures without any improvements were analyzed and the weak parts of the front end structure of the bus body were examined. Experimental tests are conducted to validate the finite element model. In the second stage, the bus structure was redesigned in order to strengthen the frontal body. Finally, the redesigned bus structure was compared with the baseline model to meet the requirements for ECE-R29. In addition to the redesign performed on the body, energy absorption capacity was increased by additional energy absorbers employed in the front of bus structure. This study experimentally and numerically investigated the energy absorption characteristics of a steering wheel armature in contact with a deformable mannequin during a crash. Variations in the location of impact on the armature, armature orientation, and mannequin were investigated to determine the effects of the energy absorption characteristics of the two contacting entities.


2012 ◽  
Vol 488-489 ◽  
pp. 8-13 ◽  
Author(s):  
S.M.R. Khalili ◽  
M. Assar ◽  
R. Eslami Farsani ◽  
I. Hajiyousefi

Aircraft structures are frequently subjected to impacts from objects such as runway debris and birds. In new aircraft structural design, Fiber Metal Laminates (FMLs) play a significant role due to their excellent mechanical properties, particularly the impact properties. In this study, the aircraft sandwich wing with FML face-sheets are analyzed by finite element model for simulating the bird strike. The numerical simulations of bird strike impact are performed adopting a lagrangian approach to design the wing by MSC/PATRAN FE code. The numerical obtained results are compared with the results in the literature for validation of the model. The effect of fiber orientations, fiber types, metal types in FML face sheets in sandwich wing on impact responses are investigated. The impact responses are illustrated by displacement history, contact force history and energy absorption. According to these results, the sandwich panel with FML skin is suitable structure for energy absorption (that is the most important factor in impact phenomena). The lay-ups with titanium metal layer with aramid fibers are the best.


2012 ◽  
Vol 229-231 ◽  
pp. 1120-1124
Author(s):  
Sajjad Dehghanpour ◽  
Sobhan Dehghanpour

Impact is one of very important subjects which always have been considered in mechanical science. Nature of impact is such that which makes its control a hard task. Therefore it is required to present the transfer of impact to other vulnerable part of a structure, when it is necessary, one of the best method of absorbing energy of impact , is by using Thin-walled tubes these tubes collapses under impact and with absorption of energy, it prevents the damage to other parts. Purpose of recent study is to survey the deformation and energy absorption of tubes with different type of cross section (rectangular or square) and with similar volumes, height, mean cross section, and material under loading. Lateral loading of tubes are quasi-static type and beside as numerical analysis, also experimental experiences has been performed to evaluate the accuracy of the results. Results from the surveys is indicates that in a same conditions which mentioned above, samples with square cross section ,absorb more energy compare to rectangular cross section, and also by increscent in thickness, energy absorption would be more.


2018 ◽  
Vol 131 ◽  
pp. 547-555 ◽  
Author(s):  
Alper Tasdemirci ◽  
Emine Fulya Akbulut ◽  
Erkan Guzel ◽  
Firat Tuzgel ◽  
Atacan Yucesoy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document