scholarly journals Experimental and numerical studies of laser-welded stainless steel channel sections under combined compression and major axis bending moment

2020 ◽  
Vol 157 ◽  
pp. 107035
Author(s):  
Yating Liang ◽  
Ou Zhao ◽  
Yue-Ling Long ◽  
Leroy Gardner
Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


2020 ◽  
Vol 27 (1) ◽  
pp. 1-5
Author(s):  
Hanadi Naji ◽  
Nibras Khalid ◽  
Mutaz Medhlom

This paper aims at presenting and discussing the numerical studies performed to estimate the mechanical and thermal behavior of RC flat slabs at elevated temperature and fire. The numerical analysis is carried out using finite element programs by developing models to simulate the performance of the buildings subjected to fire. The mechanical and thermal properties of the materials obtained from the experimental work are involved in the modeling that the outcomes will be more realistic. Many parameters related to fire resistance of the flat slabs have been studied and the finite element analysis results reveal that the width and thickness of the slab, the temperature gradient, the fire direction, the exposure duration and the thermal restraint are important factors that influence the vertical deflection, bending moment and force membrane of the flat slabs exposed to fire. However, the validation of the models is verified by comparing their results to the available experimental date. The finite element modeling contributes in saving cost and time consumed by experiments.


Author(s):  
Xiaoxue An ◽  
Alan Dobson ◽  
Chun Yip Chan

Super Duplex Stainless Steel (SDSS) tube is the main component in steel tube umbilicals for the transportation of hydraulic fluids and chemicals, or gas injection into the subsea well. The umbilical tube is made from seamless tube joined together by girth weld. Therefore, porosity is one of the main weld defects that could be discovered within the welds, and these defects can have significant impact on the execution of the whole project, in term of both schedule and cost. This paper reviews the design codes and standards relating to the porosity acceptance criteria, and discusses the recent investigation on the influences of porosity (number, size and location) to the stress distribution within the weld. The study was performed using both FEA and practical fatigue test. The results demonstrated that the distance of the pores to the weld surface is a critical parameter to the increase and localisation of stress as the pore starts to interact with the weld root or cap. In addition, significant pore stress interaction has been observed when a bending moment is introduced to the weld. The study has demonstrated that the current porosity acceptance criteria applied to umbilical manufacture in the subsea industry are typically conservative and can be modified.


Tribologia ◽  
2019 ◽  
Vol 283 (1) ◽  
pp. 29-35
Author(s):  
Ewa PIĄTKOWSKA

The excessive wear of a journal shaft can be caused by many factors, for example, working conditions (e.g., temperaturę, slip speed, the type of lubricant), pressure, the type of material used on the bearings and shafts and their roughness, as well as contamination remaining in the system. This paper presents the roughness profiles co-operating with a rubber (NBR) and polytetrafluoroethylene (PTFE) bushes. The conditions of cooperation between the two materials tested in the sliding combination with the stainless steel journal were the same in each pair of bearings (PV); therefore, the comparison of their wear depends only on the material properties of the bush and the deformation of the journal shaft caused by the bending moment. To assess the size of the journal shaft, they were tested using a profilograph. In addition to the journal shaft, bearings were also evaluated, the wear level of which was noticed without the use of specialized equipment.


Sign in / Sign up

Export Citation Format

Share Document