Study on steel wire reinforced thermoplastic pipes under combined internal pressure and bending moment at various temperatures

2021 ◽  
Vol 169 ◽  
pp. 108381
Author(s):  
Jianfeng Shi ◽  
Sijia Zhong ◽  
Xinyu Nie ◽  
Jun Shi ◽  
Jinyang Zheng
Author(s):  
Ali Salehi ◽  
Armin Rahmatfam ◽  
Mohammad Zehsaz

The present study aimed to study ratcheting strains of corroded stainless steel 304LN elbow pipes subjected to internal pressure and cyclic bending moment. To this aim, spherical and cubical shapes corrosion are applied at two depths of 1 mm and 2 mm in the critical points of elbow pipe such as symmetry sites at intrados, extrados, and crown positions. Then, a Duplex 2205 stainless steel elbow pipe is considered as an alternative to studying the impact of the pipe materials, due to its high corrosion resistance and strength, toughness, and most importantly, the high fatigue strength and other mechanical properties than stainless steel 304LN. In order to perform numerical analyzes, the hardening coefficients of the materials were calculated. The results highlight a significant relationship between the destructive effects of corrosion and the depth and shape of corrosion, so that as corrosion increases, the resulting destructive effects increases as well, also, the ratcheting strains in cubic corrosions have a higher growth rate than spherical corrosions. In addition, the growth rate of the ratcheting strains in the hoop direction is much higher across the studied sample than the axial direction. The highest growth rate of hoop strain was observed at crown and the highest growth rate of axial strains occurred at intrados position. Altogether, Duplex 2205 material has a better performance than SS 304LN.


Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.


2018 ◽  
Vol 26 (7) ◽  
pp. 58-71
Author(s):  
Fadhel Abbas Abdullah ◽  
Omar Emad Shukry

The aim of this research is to study the behavior of fiber epoxy composite curve pipe under internal pressure and bending moment. The specimens made from woven roving (Mat) fiber glass pipes and epoxy composite with 50% volume fraction are used to manufacturing curved pipe. The experimental work included manufacturing pipe specimens by vacuum bag technique. Pipe specimens were having 100mm inner diameter, 450 mm length of curvature center line of curve pipe with (43 degree) and two wall thickness are 4 and 3 mm. The test rig was designed and performed to study the effect of internal pressure and bending moment on the composite pipes. Also, the tensile test of the samples was done. The analytical expression solution has been accomplished to determine the strain, stress, for hoop and longitudinal direction. It is evident that the hoop stress for woven roving fiber composite pipe was more than longitudinal stress by almost (14%). The maximum internal pressure in the case of internal pressure only was more than compared to the combined internal pressure with bending moment by almost (115%). The most dangerous region is found in the inner arc of the curved pipe (intrude) area.


2019 ◽  
Vol 58 (4) ◽  
pp. 1247-1256
Author(s):  
Yasser S. Mohamed ◽  
H.A. El-Gamal ◽  
M.N. Abouelwafa ◽  
W.A. Al-Tabey

Author(s):  
Shinji Konosu ◽  
Masato Kano ◽  
Norihiko Mukaimachi ◽  
Shinichiro Kanamaru

General components such as pressure vessels, piping, storage tanks and so on are designed in accordance with the construction codes based on the assumption that there are no flaws in such components. There are, however, numerous instances in which in-service single or multiple volumetric flaws (local thin areas; volumetric flaws) are found in the equipment concerned. Therefore, it is necessary to establish a Fitness for Service (FFS) rule, which is capable of judging these flaws. The procedure for a single flaw or multiple flaws has recently been proposed by Konosu for assessing the flaws in the p–M (pressure-moment) Diagram, which is an easy way to visualize the status of the component with flaws simultaneously subjected to internal pressure, p and external bending moment, M due to earthquake, etc. If the assessment point (Mr, pr) lies inside the p–M line, the component with flaws is judged to be safe. In this paper, numerous experiments and FEAs for a cylinder with external multiple volumetric flaws were conducted under (1) pure internal pressure, (2) pure external bending moment, and (3) subjected simultaneously to both internal pressure and external bending moment, in order to determine the plastic collapse load at volumetric flaws by applying the twice-elastic slope (TES) as recommended by ASME. It has been clarified that the collapse (TES) loads are much the same as those calculated under the proposed p–M line based on the measured yield stress.


Sign in / Sign up

Export Citation Format

Share Document