Topography and size optimization of composite structure to control buckling temperature and thermal buckling mode shape

2022 ◽  
Vol 171 ◽  
pp. 108686
Author(s):  
Hoo Min Lee ◽  
Kang Kuk Lee ◽  
Gil Ho Yoon
2011 ◽  
Vol 328-330 ◽  
pp. 435-440
Author(s):  
Jun Liao ◽  
Lan Shan ◽  
Yan Feng

The establishment of FCEV finite element model of the subframe is based on Hypermesh platform, and a new subframe structure is designed in accordance with the stiffness and strength analysis on the original subframe in all conditions. High-strength steel materials are used to optimize the design of this new structure, which result in the optimal size. Through the comparative analysis of the strength, stiffness, mode shape and quality on new subframe and the original one, it is verified that the design of the new subframe is reasonable and feasible.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 582 ◽  
Author(s):  
Mahdieh Shahmardani ◽  
Per Ståhle ◽  
Md Shafiqul Islam ◽  
Sharon Kao-Walter

In thin notched sheets under tensile loading, wrinkling appears on the sheet surface, specifically around the cracked area. This is due to local buckling and compression stresses near the crack surfaces. This study aims to numerically study the buckling behavior of a thin sheet with a central crack under tension. A numerical model of a notched sheet under tensile loading is developed using the finite element method, which considers both material and geometrical nonlinearity. To overcome the convergence problem caused by the small thickness-to-length/width ratio and to stimulate the buckling, an imperfection is defined as a small perturbation in the numerical model. Both elastic and elasto-plastic behavior are applied, and the influence of them is studied on the critical buckling stress and the post-buckling behavior of the notched sheet. Numerical results for both elastic and elasto-plastic behavior reflect that very small perturbations need more energy for the activation of buckling mode, and a higher buckling mode is predominant. The influences of different parameters, including Poisson’s ratio, yield limit, crack length-to-sheet-width ratio, and the sheet aspect ratio are also evaluated with a focus on the critical buckling stress and the buckling mode shape. With increase in Poisson’s ratio. First, the critical buckling stress reduces and then remains constant. A higher yield limit results in increases in the critical buckling stress, and no change in the buckling mode shape while adopting various crack length-to-sheet-width ratios, and the sheet aspect ratio changes the buckling mode shape.


2013 ◽  
Vol 81 (4) ◽  
Author(s):  
H. Kalathur ◽  
T. M. Hoang ◽  
R. S. Lakes ◽  
W. J. Drugan

Buckling of compressed flat-end columns loaded by unattached flat platens is shown, theoretically and experimentally, to occur first at the critical load and associated mode shape of a built-in column, followed extremely closely by a second critical load and different mode shape characterized by column end tilt. The theoretical critical load for secondary or end tilt buckling for a column geometry tested is shown to be only 0.13% greater than the critical load for primary buckling, in which the ends are in full contact with the compression platens. The experimental value is consistent with this theoretical one. Interestingly, under displacement control, the first buckling instability is characterized by a smoothly increasing applied load, whereas the closely following second instability causes an abrupt and large load drop (and hence exhibits incremental negative stiffness). The end tilt buckling gives rise to large hysteresis that can be useful in structural damping but that is nonconservative and potentially catastrophic in the context of design of structural support columns.


Author(s):  
Xiuhua Men ◽  
Tianyi Zhang ◽  
Yongzhi Pan ◽  
Xiaohui Wang ◽  
Shuai Wang ◽  
...  

2014 ◽  
Vol 1016 ◽  
pp. 790-796 ◽  
Author(s):  
Ziaul Rehman Tahir ◽  
Parthasarathi Mandal

Asymmetric meshing is a perturbation introduced in the numerical model without changing geometry, loading or boundary conditions. Asymmetric meshing is employed in the form of a band along axial direction of the shell model, the elements size in the axial band is reduced as compared with the rest of shell to produce asymmetry in the meshing and four amplitudes of asymmetry are used in a particular band. Asymmetric meshing affects predicted buckling load, buckling mode shape and post-buckling behaviour. The reduction in the buckling load using asymmetric meshing was observed to be about 18%, which depends mainly on area of asymmetric meshing and less on different magnitudes of asymmetry in the same area. The load-displacement curve behaviourusing asymmetric meshing technique is quite similar to the curve obtained by introducing geometric imperfection in the shell model.


2014 ◽  
Vol 578-579 ◽  
pp. 598-601
Author(s):  
Yong Bin Ma ◽  
Tian Hu He ◽  
Bing Dong Gu

Buckling analysis is a technique used to determine buckling load and buckled mode shape. Buckling load is the critical load at which a structure becomes unstable while buckled mode shape is the characteristic shape associated with a structure's buckled response. In this paper, the elastic thermal buckling of a heated cyclic symmetry structure is carried out by means of finite element method. The buckling cyclic symmetry analysis is focused on a ring-strut-ring structure which is extensively used as a basic element in rotating machines. The linear eigenvalue buckling analysis is adopted to determine the buckling response with the temperature change of the structure.


2013 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Wesam Dawood Salman Al-rubia ◽  
◽  
S. Pavithran ◽  

Sign in / Sign up

Export Citation Format

Share Document