The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions

Urban Climate ◽  
2021 ◽  
Vol 37 ◽  
pp. 100823
Author(s):  
Ahmed H.M. Eldesoky ◽  
Jorge Gil ◽  
Meta Berghauser Pont
2018 ◽  
Vol 10 (10) ◽  
pp. 1572 ◽  
Author(s):  
Chunping Qiu ◽  
Michael Schmitt ◽  
Lichao Mou ◽  
Pedram Ghamisi ◽  
Xiao Zhu

Global Local Climate Zone (LCZ) maps, indicating urban structures and land use, are crucial for Urban Heat Island (UHI) studies and also as starting points to better understand the spatio-temporal dynamics of cities worldwide. However, reliable LCZ maps are not available on a global scale, hindering scientific progress across a range of disciplines that study the functionality of sustainable cities. As a first step towards large-scale LCZ mapping, this paper tries to provide guidance about data/feature choice. To this end, we evaluate the spectral reflectance and spectral indices of the globally available Sentinel-2 and Landsat-8 imagery, as well as the Global Urban Footprint (GUF) dataset, the OpenStreetMap layers buildings and land use and the Visible Infrared Imager Radiometer Suite (VIIRS)-based Nighttime Light (NTL) data, regarding their relevance for discriminating different Local Climate Zones (LCZs). Using a Residual convolutional neural Network (ResNet), a systematic analysis of feature importance is performed with a manually-labeled dataset containing nine cities located in Europe. Based on the investigation of the data and feature choice, we propose a framework to fully exploit the available datasets. The results show that GUF, OSM and NTL can contribute to the classification accuracy of some LCZs with relatively few samples, and it is suggested that Landsat-8 and Sentinel-2 spectral reflectances should be jointly used, for example in a majority voting manner, as proven by the improvement from the proposed framework, for large-scale LCZ mapping.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 776 ◽  
Author(s):  
Ziqi Zhao ◽  
Lidu Shen ◽  
Liguang Li ◽  
Hongbo Wang ◽  
Bao-Jie He

Studies on urban ventilation indicate that urban ventilation performance is highly dependent on urban morphology. Some studies have linked local-scale urban ventilation performance with the local climate zone (LCZ) that is proposed for surface temperature studies. However, there is a lack of evidence-based studies showing LCZ ventilation performance and affirming the reliability of using the LCZ classification scheme to demonstrate local-scale urban ventilation performance. Therefore, this study aims to analyse LCZ ventilation performances in order to understand the suitability of using the LCZ classification scheme to indicate local-scale urban ventilation performance. This study was conducted in Shenyang, China, with wind information at 16 weather stations in 2018. The results indicate that the Shenyang weather station had an annual mean wind speed of 2.07 m/s, while the mean wind speed of the overall 16 stations was much lower, only 1.44 m/s in value. The mean wind speed at Shenyang weather station and the 16 stations varied with seasons, day and night and precipitation conditions. The spring diurnal mean wind was strong with the speeds of 3.56 m/s and 2.21 m/s at Shenyang weather station and the 16 stations, respectively. The wind speed (2.21 m/s at Shenyang weather station) under precipitation conditions was higher than that (1.75 m/s at Shenyang weather station) under no precipitation conditions. Downtown ventilation performance was weaker than the approaching wind background, where the relative mean wind speed in the downtown area was only 0.53, much less than 1.0. The downtown ventilation performance also varied with seasons, day and night and precipitation conditions, where spring diurnal downtown ventilation performance was the weakest and the winter nocturnal downtown ventilation performance was the strongest. Moreover, the annual mean wind speed of the 16 zones decreased from the sparse, open low-rise zones to the compact midrise zones, indicating the suitability of using LCZ classification scheme to indicate local-scale urban ventilation performance. The high spatial correlation coefficients under different seasons, day and night and precipitation conditions, ranging between 0.68 and 0.99, further affirmed that LCZ classification scheme is also suitable to indicate local-scale urban ventilation performance, despite without the consideration of street structure like precinct ventilation zone scheme.


Sign in / Sign up

Export Citation Format

Share Document