A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction

2014 ◽  
Vol 144 ◽  
pp. 9-18 ◽  
Author(s):  
K. Babinsky ◽  
R. De Kloe ◽  
H. Clemens ◽  
S. Primig
MRS Bulletin ◽  
2007 ◽  
Vol 32 (5) ◽  
pp. 400-407 ◽  
Author(s):  
Joachim Mayer ◽  
Lucille A. Giannuzzi ◽  
Takeo Kamino ◽  
Joseph Michael

AbstractOne of the most important applications of a focused ion beam (FIB) workstation is preparing samples for transmission electron microscope (TEM) investigation. Samples must be uniformly thin to enable the analyzing beam of electrons to penetrate. The FIB enables not only the preparation of large, uniformly thick, sitespecific samples, but also the fabrication of lamellae used for TEM samples from composite samples consisting of inorganic and organic materials with very different properties. This article gives an overview of the variety of techniques that have been developed to prepare the final TEM specimen. The strengths of these methods as well as the problems, such as FIB-induced damage and Ga contamination, are illustrated with examples. Most recently, FIB-thinned lamellae were used to improve the spatial resolution of electron backscatter diffraction and energy-dispersive x-ray mapping. Examples are presented to illustrate the capabilities, difficulties, and future potential of FIB.


2016 ◽  
Vol 22 (3) ◽  
pp. 583-588 ◽  
Author(s):  
Katherine P. Rice ◽  
Yimeng Chen ◽  
Ty J. Prosa ◽  
David J. Larson

AbstractThere are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary.


MRS Advances ◽  
2018 ◽  
Vol 3 (8-9) ◽  
pp. 487-492
Author(s):  
Nicolas J. Briot ◽  
T. John Balk

ABSTRACTCharacterizing individual ligaments’ behavior during deformation of nanoporous (np) structures remains crucial in further understanding the mechanical response of such materials. In this paper, we report, for the first time, quantifiable results describing the reorientation of ligament structure in np gold (np-Au) subjected to nanoindentation, based on characterization by electron backscatter diffraction (EBSD) orientation mapping. The analysis was performed on a cross-sectioned face at the center of an indent, after specimen preparation utilizing focused ion beam (FIB) techniques. This work provides insights into how the np structure accommodates the material volume displaced during nanoindentation, as well as the strain propagation under the indent. This new knowledge will be fundamental to optimizing utilization of the nanoindentation technique for measurement of np materials and, in particular, np thin films.


2017 ◽  
Vol 23 (2) ◽  
pp. 194-209 ◽  
Author(s):  
Ty J. Prosa ◽  
David J. Larson

AbstractApproximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.


2008 ◽  
Vol 47 (30) ◽  
pp. 5637-5640 ◽  
Author(s):  
Eli Stavitski ◽  
Martyn R. Drury ◽  
D. A. Matthijs de Winter ◽  
Marianne H. F. Kox ◽  
Bert M. Weckhuysen

2007 ◽  
Vol 558-559 ◽  
pp. 413-418 ◽  
Author(s):  
Wan Qiang Xu ◽  
Michael Ferry ◽  
Julie M. Cairney ◽  
John F. Humphreys

A typical dual-beam platform combines a focused ion beam (FIB) microscope with a field emission gun scanning electron microscope (FEGSEM). Using FIB-FEGSEM, it is possible to sequentially mill away > ~ 50 nm sections of a material by FIB and characterize, at high resolution, the crystallographic features of each new surface by electron backscatter diffraction (EBSD). The successive images can be combined to generate 3D crystallographic maps of the microstructure. A useful technique is described for FIB milling that allows the reliable reconstruction of 3D microstructures using EBSD. This serial sectioning technique was used to investigate the recrystallization behaviour of a particle-containing nickel alloy, which revealed a number of features of the recrystallizing grains that are not clearly evident in 2D EBSD micrographs such as clear evidence of particle stimulated nucleation (PSN) and twin formation and growth during PSN.


2012 ◽  
Vol 715-716 ◽  
pp. 498-501 ◽  
Author(s):  
Ali Gholinia ◽  
Ian Brough ◽  
John F. Humphreys ◽  
Pete S. Bate

A combination of electron backscatter diffraction (EBSD) and focused ion beam (FIB) techniques were used to obtain 3D EBSD data in an investigation of dynamic recrystallization in a Cu-2%Sn bronze alloy. The results of this investigation show the origin of the nucleation sites for dynamic recrystallization and also elucidates the orientation relationship of the recrystallized grains to the deformed, prior grains and between the dynamically recrystallized grains.


1999 ◽  
Vol 7 (2) ◽  
pp. 12-15 ◽  
Author(s):  
Lucille A. Giannuzzi ◽  
Richard Young ◽  
Pete Carleson

AbstractDriven by the analytical needs of microelectronics, magnetic media and micro-fabrication industries, focused ion beam (FIB) systems are now capable of milling and manipulating samples for the analysis of microstructure features having dimensions of 180 nm or less, A technique for locating and extracting site specific specimens for examination by transmission electron microscopy (TEM) has been developed. An identified feature can be located and precisely milled with an FIB system from two sides to prepare an ultrathin sample, and then extracted from the region with a glass rod micromanipulator onto a grid for TEM analysis. This specimen preparation method has been applied to semiconductor failure analysis and to the study of metallic and ceramic microsiructures with irregular topographies and complex mufti-layered components.


Sign in / Sign up

Export Citation Format

Share Document