A recombinant 63-kDa form of Bacillus anthracis protective antigen produced in the yeast Saccharomyces cerevisiae provides protection in rabbit and primate inhalational challenge models of anthrax infection

Vaccine ◽  
2006 ◽  
Vol 24 (10) ◽  
pp. 1501-1514 ◽  
Author(s):  
R HEPLER ◽  
R KELLY ◽  
T MCNEELY ◽  
H FAN ◽  
M LOSADA ◽  
...  
2002 ◽  
Vol 70 (3) ◽  
pp. 1653-1656 ◽  
Author(s):  
Helen C. Flick-Smith ◽  
Nicola J. Walker ◽  
Paula Gibson ◽  
Helen Bullifent ◽  
Sarah Hayward ◽  
...  

ABSTRACT The immunogenicity and protective efficacy of overlapping regions of the protective antigen (PA) polypeptide, cloned and expressed as glutathione S-transferase fusion proteins, have been assessed. Results show that protection can be attributed to individual domains and imply that it is domain 4 which contains the dominant protective epitopes of PA.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0130952 ◽  
Author(s):  
Matthew D. Reed ◽  
Julie A. Wilder ◽  
William M. Mega ◽  
Julie A. Hutt ◽  
Philip J. Kuehl ◽  
...  

2011 ◽  
Vol 79 (9) ◽  
pp. 3846-3854 ◽  
Author(s):  
Jeyoun Jang ◽  
Minhui Cho ◽  
Jeong-Hoon Chun ◽  
Min-Hee Cho ◽  
Jungchan Park ◽  
...  

ABSTRACTThe poly-γ-d-glutamic acid (PGA) capsule is one of the major virulence factors ofBacillus anthracis, which causes a highly lethal infectious disease. The PGA capsule disguisesB. anthracisfrom immune surveillance and allows its unimpeded growth in the host. The PGA capsule recently was reported to be associated with lethal toxin (LT) in the blood of experimentally infected animals (M. H. Cho, et al., Infect. Immun. 78:387-392, 2010). The effect of PGA, either alone or in combination with LT, on macrophages, which play an important role in the progression of anthrax disease, has not been thoroughly investigated. In this study, we investigated the effect of PGA on LT cytotoxicity using the mouse macrophage cell line J774A.1. PGA produced a concentration-dependent enhancement of the cytotoxicity of LT on J774A.1 cells through an enhancement in the binding and accumulation of protective antigen to its receptors. The increase of LT activity was confirmed using Western blot analysis, which showed that the combination of PGA and LT produced a greater degree of degradation of mitogen-activated protein kinase kinases and an increased level of the activation of the proform of caspase-1 to its processed form compared to the effects of LT alone. In addition, mice that received a tail vein injection of both PGA and LT had a significantly increased rate of death compared to that of mice injected with LT alone. PGA had no effect when added to cultures or administered to mice in the absence of LT. These results emphasize the importance of PGA in the pathogenesis of anthrax infection.


2019 ◽  
Vol 4 (4) ◽  
pp. 250-255
Author(s):  
Manoj Kumar ◽  
Nidhi Puranik ◽  
Nagesh Tripathi ◽  
Vijai Pal ◽  
Ajay Goel

Protective antigen (PA) produced by Bacillus anthracis is a highly immunogenic protein. Therefore, it has significant importance in serodiagnosis as well as a vaccine candidate for anthrax. In the present study, codons for PA gene were optimised and synthesised for its expression in Escherichia coli. Various expression conditions were optimised for scaled up production of rPA. The final yield of affinity chromatography purified protein was 40.8 mg/l during batch fermentation. For further purification, affinity purified protein was diafiltered and subjected to anion exchange chromatography. SDS-PAGE and Western blot was used to characterise the purified rPA protein. The diagnostic potential of purified rPA was evaluated in Western blot using standards reference serum AVR 801 and cutaneous anthrax clinical sera. The results of the present study established the optimum production of rPA in E. coli after codon optimisation for its subsequent use in diagnosis of anthrax infection.


2005 ◽  
Vol 73 (2) ◽  
pp. 795-802 ◽  
Author(s):  
Nehal Mohamed ◽  
Michelle Clagett ◽  
Juan Li ◽  
Steven Jones ◽  
Steven Pincus ◽  
...  

ABSTRACT We have developed a therapeutic for the treatment of anthrax using an affinity-enhanced monoclonal antibody (ETI-204) to protective antigen (PA), which is the central cell-binding component of the anthrax exotoxins. ETI-204 administered preexposure by a single intravenous injection of a dose of between 2.5 and 10 mg per animal significantly protected rabbits from a lethal aerosolized anthrax spore challenge (∼60 to 450 times the 50% lethal dose of Bacillus anthracis Ames). Against a similar challenge, ETI-204 administered intramuscularly at a 20-mg dose per animal completely protected rabbits from death (100% survival). In the postexposure setting, intravenous administration of ETI-204 provided protection 24 h (8 of 10) and 36 h (5 of 10) after spore challenge. Administration at 48 h postchallenge, when 3 of 10 animals had already succumbed to anthrax infection, resulted in the survival of 3 of 7 animals (43%) for the duration of the study (28 days). Importantly, surviving ETI-204-treated animals were free of bacteremia by day 10 and remained so until the end of the studies. Only 11 of 51 ETI-204-treated rabbits had positive lung cultures at the end of the studies. Also, rabbits that were protected from inhalational anthrax by administration of ETI-204 developed significant titers of PA-specific antibodies. Presently, the sole therapeutic regimen available to treat infection by inhalation of B. anthracis spores is a 60-day course of antibiotics that is effective only if administered prior to or shortly after exposure. Based upon results reported here, ETI-204 is an effective therapy for prevention and treatment of inhalational anthrax.


2002 ◽  
Vol 70 (4) ◽  
pp. 2022-2028 ◽  
Author(s):  
Helen C. Flick-Smith ◽  
Jim E. Eyles ◽  
Richard Hebdon ◽  
Emma L. Waters ◽  
Richard J. Beedham ◽  
...  

ABSTRACT Existing licensed anthrax vaccines are administered parenterally and require multiple doses to induce protective immunity. This requires trained personnel and is not the optimum route for stimulating a mucosal immune response. Microencapsulation of vaccine antigens offers a number of advantages over traditional vaccine formulations, including stability without refrigeration and the potential for utilizing less invasive routes of administration. Recombinant protective antigen (rPA), the dominant antigen for protection against anthrax infection, was encapsulated in poly-l-lactide 100-kDa microspheres. Alternatively, rPA was loosely attached to the surfaces of microspheres by lyophilization. All of the microspheric formulations were administered to A/J mice with a two-dose schedule by either the intramuscular route, the intranasal route, or a combination of these two routes, and immunogenicity and protective efficacy were assessed. An intramuscular priming immunization followed by either an intramuscular or intranasal boost gave optimum anti-rPA immunoglobulin G titers. Despite differences in rPA-specific antibody titers, all immunized mice survived an injected challenge consisting of 103 median lethal doses of Bacillus anthracis STI spores. Immunization with microencapsulated and microsphere-associated formulations of rPA also protected against aerosol challenge with 30 median lethal doses of STI spores. These results show that rPA can be encapsulated and surface bound to polymeric microspheres without impairing its immunogenicity and also that mucosal or parenteral administration of microspheric formulations of rPA efficiently protects mice against both injected and aerosol challenges with B. anthracis spores. Microspheric formulations of rPA could represent the next generation of anthrax vaccines, which could require fewer doses because they are more potent, are less reactogenic than currently available human anthrax vaccines, and could be self-administered without injection.


2016 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Titin Yulinery ◽  
Ratih M.Dewi

Tes kemampuan adalah salah satu kegiatan penting dalam pengendalian mutu dan jaminan kualitas mikrobiologi laboratorium untuk mengukur kompetensi analis dan analisis uji profisiensi membutuhkan persiapan Model mikroorganisme adalah kualitas standar dan validitas. Mikrobiologi uji kualitas produk kedelai utama diarahkan pada kehadiran Saccharomyces cerevisiae ragi (S. cerevisiae), S. Bailli, S. rouxii dankontaminan bakteri seperti Bacillus dan Deinococcus. Jenis ragi dan bakteri yang terlibat dalam proses dan dapat menjadi salah satu parameter kualitas penting dalam persiapan yang dihasilkan. Jumlah dan viabilitas bakteri dan ragi menjadi parameter utama dalam proses persiapan bahan uji. Jumlah tersebut adalah jumlah minimum yang berlaku dapat dianalisis. Jumlah ini harus dibawah 10 CFU diperlukan untuk menunjukkan tingkat hygienitas proses dan tingkat minimal kontaminasi. Viabilitas bakteri dan bahan tes ragi persiapan untuk tes kemahiran kecap yang diawetkan dengan L-pengeringan adalah teknik Deinococcus radiodurans (D. radiodurans) 16 tahun, 58 tahun S. cerevisiae, dan S. roxii 13 tahun. kata kunci: Viabilitas, Deinococcus, khamir, L-pengeringan, Proficiency AbstractProficiency test is one of the important activities in quality control and quality assurance microbiology laboratory for measuring the competence of analysts and analysis Proficiency test requires a model microorganism preparations are standardized quality and validity. Microbiological test of the quality of the main soy products aimed at thepresence of yeast Saccharomyces cerevisiae (S. cerevisiae), S. bailli, S. rouxii and bacterial contaminants such as Bacillus and Deinococcus. Types of yeasts and bacteria involved in the process and can be one of the important quality parameters in the preparation produced. The number and viability of bacteria and yeasts become themain parameters in the process of test preparation materials. The amount in question is the minimum number that is valid can be analyzed. This amount must be below 10 CFU required to indicate the level of hygienitas process and the minimum level of contamination. Viability of bacteria and yeast test preparation materials for proficiencytest of soy sauce that preserved by L-drying technique is Deinococcus radiodurans ( D. radiodurans ) 16 years, 58 years S. cerevisiae, and S. roxii 13 years. key words : Viability, Deinococcus, Khamir, L-drying, Proficiency


Tsitologiya ◽  
2018 ◽  
Vol 60 (7) ◽  
pp. 555-557 ◽  
Author(s):  
E. A. Alekseeva ◽  
◽  
T. A. Evstyukhina ◽  
V. T. Peshekhonov ◽  
V. G. Korolev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document