Effect of regulating compressive strains on thermal transport of silicon-based amorphous silica thin films and interfacial thermal resistance

Vacuum ◽  
2021 ◽  
pp. 110676
Author(s):  
Zhibin Li ◽  
Hairong Wang ◽  
Huiying Zhao ◽  
Jiuhong Wang ◽  
Xueyong Wei ◽  
...  
2015 ◽  
Vol 17 (37) ◽  
pp. 23704-23710 ◽  
Author(s):  
Jingchao Zhang ◽  
Yang Hong ◽  
Zhen Tong ◽  
Zhihuai Xiao ◽  
Hua Bao ◽  
...  

For the first time, the interfacial thermal resistance between silicene and multiple substrates,i.e., crystalline silicon and silica, amorphous silicon and silica are calculated using a transient heating molecular dynamics technique.


2019 ◽  
Author(s):  
Katherine Mitchell ◽  
Hunter Horner ◽  
Alex Resnick ◽  
Jungkyu Park ◽  
Eduardo B. Farfán ◽  
...  

Abstract Understanding the effect of fission gas generation on thermal resistance in various nuclear fuels is critical for managing fuel performance. Fission gas in the fuels degrades its thermal properties by altering the lattice vibrations. It results in thermal expansion that increases the thermal resistance and decreases the structural stability of the fuels. In this research, thermal transport in uranium dioxide is studied at a microscopic level when Xe and Kr gasses interact with uranium and oxygen atoms. Reverse non-equilibrium molecular dynamics (RNEMD) is used to calculate the thermal resistances and provide an understanding about the effect of the fission gas release on phonon transport. The results show that the thermal conductivity of uranium dioxide is decreased nearly by 78% by the presence of only one fission gas bubble. The thermal transport in uranium dioxide is shown to become highly diffusive by a single fission gas bubble and a large temperature drop in temperature profiles are observed in all simulation structures with fission gas bubbles. The average interfacial thermal resistance across a fission gas bubble is estimated to be 2.1 × 10−9 Km2/W.


2006 ◽  
Vol 35 (1) ◽  
pp. 17-27 ◽  
Author(s):  
A. Kusiak ◽  
J.-L. Battaglia ◽  
S. Gomez ◽  
J.-P. Manaud ◽  
Y. Lepetitcorps

2016 ◽  
Vol 18 (30) ◽  
pp. 20371-20380 ◽  
Author(s):  
Chao-Ching Chiang ◽  
Chien-You Su ◽  
An-Chih Yang ◽  
Ting-Yu Wang ◽  
Wen-Ya Lee ◽  
...  

This paper reports on the fabrication of low-k (amorphous) silica thin films cast from solutions without and with two different types of surfactants (TWEEN® 80 and Triton™ X-100) to elucidate the relationships between the structural/morphological features of the casting solutions and the physical properties of the resulting thin films.


Author(s):  
Fanhe Meng ◽  
Jin Liu ◽  
Robert F. Richards

Nanoparticle-based materials have demonstrated extremely low thermal conductivities, a property that has made them attractive candidates in a variety of macroscale and microscale applications. Understanding the thermal transport between nanoparticles is necessary for the further development of these materials. Molecular dynamics simulation is an effective method to investigate thermal transport on these scales because no assumption about phonon transmission at the nanoparticle interface, nor prior knowledge of thermal transport of the system is necessary. In this work, the total thermal resistance between adjacent amorphous silica nanoparticles is calculated using non-equilibrium molecular dynamics simulations (NEMD). Numerical results show that interparticle resistance depends strongly on the forces between particles, in particular the presence or absence of chemical bonds between nanoparticles. In addition, the effect of interfacial force strength on thermal resistance increases as nanoparticle diameter decreases. Numerical results are compared to interparticle resistances determined from the predictions of the analytical constriction resistance model. The simulation results are shown to be in good agreement the constriction resistance theory depending on the choice of surface energy.


Author(s):  
Sushan Nakarmi ◽  
V. U. Unnikrishnan

The variations in thermal conductivity of nanocomposites are found to depend not only the intrinsic properties of the fiber and matrix phases but also on the interfacial resistance of the reinforcing phase. As we go down the length scales, the interfacial thermal resistance due to size of the nanoparticle becomes significant. In order to address the effect of size (length and diameter) of nanotube on the thermal transport property of nanotube composites, thermal conductivity of different nanotube samples varying in length and diameter will be estimated first using molecular dynamic (MD) simulations with AIREBO potentials. This will be carried out using the ‘Heat-Bath’ method - non-equilibrium molecular dynamics (NEMD) approach. In the heat bath method, constant amount of heat is added to and removed from the hot and cold regions and the resulting temperature gradient is measured and the thermal conductivity is calculated using the Fourier Law. This will be followed by the study of interfacial thermal resistance of these nanostructures. These intrinsic properties are then used with continuum based mathematical formulations to study the effect of size of the nanoparticle on the overall thermal conductivity of the nanocomposite.


1992 ◽  
Vol 284 ◽  
Author(s):  
J. C. Lambropoulos ◽  
S.-S. Hwang

ABSTRACTWe summarize various measurements of the thermal conductivity of thin ceramic films which show that the thermal conductivity of thin films with thickness in the micron and sub-micron range may be up to two orders of magnitude lower than the thermal conductivityof the corresponding bulk solid. The reduction in the thin film effective thermal conductivity is attributed to the interfacial thermal resistance across the film/substrate interface.


2013 ◽  
Vol 117 (7) ◽  
pp. 3475-3482 ◽  
Author(s):  
M. Boffelli ◽  
M. Back ◽  
E. Cattaruzza ◽  
F. Gonella ◽  
E. Trave ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document