scholarly journals Nitric oxide is elicited and inhibits viral replication in pigs infected with porcine respiratory coronavirus but not porcine reproductive and respiratory syndrome virus

2010 ◽  
Vol 136 (3-4) ◽  
pp. 335-339 ◽  
Author(s):  
Kwonil Jung ◽  
Ashita Gurnani ◽  
Gourapura J. Renukaradhya ◽  
Linda J. Saif
Author(s):  
Gerard Martín-Valls ◽  
Yanli Li ◽  
Ivan Díaz ◽  
Esmeralda Cano ◽  
Silvana Sosa Portugal ◽  
...  

Respiratory disease in weaned pigs is a common problem in the field, with a complex aetiology of both viruses and bacteria. In the present study, we investigated the presence of eleven viruses in nasal swabs collected from nurseries (fifty-five clinical outbreaks) under the suspicion of swine influenza A virus (swIAV) by cough and fever. The other ten viruses included influenza B (IBV) and influenza D viruses (IDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine respiratory coronavirus (PRCV), Porcine cytomegalovirus (PCMV), porcine circoviruses 2 (PCV2), 3 (PCV3) and 4 (PCV), Porcine parainfluenza 1 virus (PPIV1) and Swine orthopneumovirus (SOV). Twenty-nine swIAV-positive cases and twenty-six cases of swIAV-negative respiratory disease were primarily established. IBV, IBD, PCV4 and PPIV1 were not found in any case, while PRCV, SOV, and PCMV were more likely to be found in swIAV-positive nurseries with respiratory disease ( p<0.05) although, globally, PCV3, PRRSV, and PCMV were the most frequently detected agents on herd level. At an individual level, the prevalence of different viruses was: swIAV 48.6%; PRCV 48.0%; PRRSV 31.6%; SOV 33.8%; PCMV 48.3%, PCV2 36.0%; and PCV3 33.0%. Beyond that, it was common to find animals with low Ct values (< 30) for all agents except for PCV2 and PCV3. When analysed the association between different pathogens, PRCV was the one with the most associations. It positively interacted ( p < 0.05) with swIAV and SOV but was negatively associated ( p < 0.05) with PRRSV and PCVM. Besides these, swIAV and PRRSV were negatively related (p < 0.05). Further analysis of suckling pigs showed that circulation of PRCV, PCMV, SOV, and PCV3 started in the maternities, suggesting a role of the sows in the transmission. Overall, our data may contribute to a better understanding of the complex aetiology and the epidemiology of respiratory disease in weaners. This is the first report of SOV in Spain.


2009 ◽  
Vol 90 (11) ◽  
pp. 2713-2723 ◽  
Author(s):  
Kwonil Jung ◽  
Gourapura J. Renukaradhya ◽  
Konstantin P. Alekseev ◽  
Ying Fang ◽  
Yuxin Tang ◽  
...  

The innate immune response is critical for host defence against respiratory coronaviruses (CoVs). This study demonstrated that an ongoing respiratory virus infection compromises innate immune responses and affects the pathogenesis of a respiratory CoV co-infection. An innate immunosuppressive respiratory virus infection was established by infecting weaned pigs with porcine reproductive and respiratory syndrome virus (PRRSV); 10 days later, the pigs were exposed to porcine respiratory coronavirus (PRCV). The PRRSV/PRCV dual-infected pigs had reduced weight gains, a higher incidence of fever and more severe pneumonia compared with either single infection. Significant suppression of innate immune responses [reduced alpha interferon (IFN-α) levels in the lungs and reduced blood natural killer cell cytotoxicity] by the ongoing PRRSV infection was observed in dual-infected pigs, which coincided with exacerbated pneumonia during early PRCV infection. The subsequent PRCV infection led to enhanced PRRSV replication in the lungs and a trend towards increased serum T-helper type 1 (Th1) (IFN-γ) but decreased Th2 [interleukin (IL)-4] responses, further exacerbating PRRSV pneumonia. Following PRCV infection, more severe PRRSV-related pulmonary alveolar macrophage (PAM) apoptosis occurred, as determined by an in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay, suggesting increased PRRSV replication in PAMs. Collectively, these observations suggest interactive effects between PRCV and PRRSV via early innate (IFN-α) and later adaptive Th1 (IFN-γ) and Th2 (IL-4) immune responses. These findings imply that an existing immunomodulating respiratory viral co-infection may be a contributing factor to more severe pneumonia in respiratory CoV disease. This study provides new insights into host–pathogen interactions related to co-infection by CoVs and other respiratory viruses.


2009 ◽  
Vol 22 (3) ◽  
pp. 173-180 ◽  
Author(s):  
S.L. Brockmeier ◽  
K.M. Lager ◽  
M.J. Grubman ◽  
D.E. Brough ◽  
D. Ettyreddy ◽  
...  

1993 ◽  
Vol 17 (3-4) ◽  
pp. 263-269 ◽  
Author(s):  
Ignacio Lanza ◽  
Pedro Rubio ◽  
Máximo Fernández ◽  
María Muńoz ◽  
Pedro Cármenes

2000 ◽  
Vol 7 (4) ◽  
pp. 700-702 ◽  
Author(s):  
Steven B. Witte ◽  
Cindy Chard-Bergstrom ◽  
Thomas A. Loughin ◽  
Sanjay Kapil

ABSTRACT A rapid, inexpensive enzyme-linked immunosorbent assay (ELISA) to quantitate antibodies to porcine respiratory and reproductive syndrome virus (PRRSV) in serum was developed using a recombinant PRRSV nucleoprotein (rN). The sensitivity (85.3%) and specificity (81.7%) of the Kansas State University ELISA were good, correlating well (82.4%) with the IDEXX HerdChek ELISA.


2004 ◽  
Vol 78 (16) ◽  
pp. 8709-8719 ◽  
Author(s):  
Jun Yoshitake ◽  
Takaaki Akaike ◽  
Teruo Akuta ◽  
Fumio Tamura ◽  
Tsutomu Ogura ◽  
...  

ABSTRACT Nitric oxide (NO) may affect the genomes of various pathogens, and this mutagenesis is of particular interest for viral pathogenesis and evolution. Here, we investigated the effect of NO on viral replication and mutation. Exogenous or endogenous NO had no apparent antiviral effect on influenza A virus and Sendai virus. The mutagenic potential of NO was analyzed with Sendai virus fused to a green fluorescent protein (GFP) gene (GFP-SeV). GFP-SeV was cultured in SW480 cells transfected with a vector expressing inducible NO synthase (iNOS). The mutation frequency of GFP-SeV was examined by measuring loss of GFP fluorescence of the viral plaques. GFP-SeV mutation frequency in iNOS-SW480 cells was much higher than that in parent SW480 cells and was reduced to the level of mutation frequency in the parent cells by treatment with an NO synthase (NOS) inhibitor. Immunocytochemistry showed generation of more 8-nitroguanosine in iNOS-SW480 cells than in SW480 cells without iNOS transfection. Authentic 8-nitroguanosine added exogenously to GFP-SeV-infected CV-1 cells increased the viral mutation frequency. Profiles of the GFP gene mutations induced by 8-nitroguanosine appeared to resemble those of mutations occurring in mouse lungs in vivo. A base substitution that was characteristic of both mutants (those induced by 8-nitroguanosine and those occurring in vivo) was a C-to-U transition. NO-dependent oxidative stress in iNOS-SW480 cells was also evident. Together, the results indicate unambiguously that NO has mutagenic potential for RNA viruses such as Sendai virus without affecting viral replication, possibly via 8-nitroguanosine formation and cellular oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document