Salmonella enterica serovar Enteritidis ghosts displaying a surface FliC adjuvant elicit a robust immune response and effective protection against virulent challenge

2020 ◽  
Vol 243 ◽  
pp. 108633 ◽  
Author(s):  
Amal Senevirathne ◽  
Chamith Hewawaduge ◽  
John Hwa Lee
2017 ◽  
Vol 76 (1) ◽  
Author(s):  
Won Kyong Kim ◽  
Ja Young Moon ◽  
Jeong Sang Cho ◽  
Md Rashedunnabi Akanda ◽  
Byung Yong Park ◽  
...  

2013 ◽  
Vol 44 (1) ◽  
pp. 37 ◽  
Author(s):  
Marta Matulova ◽  
Karolina Varmuzova ◽  
Frantisek Sisak ◽  
Hana Havlickova ◽  
Vladimir Babak ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6359 ◽  
Author(s):  
Yu Zhang ◽  
Yang Chen ◽  
Tiantian Gu ◽  
Qi Xu ◽  
Guoqiang Zhu ◽  
...  

Persistent colonization of the avian reproductive tract by Salmonella enterica serovar Enteritidis (SE) negatively affects egg production and contaminates the egg. The immune function of the ovary and oviduct is essential for protection from infection and for the production of wholesome eggs. However, the immune response of laying ducks during SE infection is not well-understood. In this study, ducks (Anas platyrhynchos) were infected with SE and were systematically monitored for fecal shedding during a 13-week period. We also assessed bacterial distribution in the reproductive tract and classified infected ducks as resistant or susceptible based on the presence of tissue lesions and on SE isolation from fecal samples. We found that infected animals had persistent, but intermittent, bacterial shedding that resulted in the induction of carrier ducks. Laying rate and egg quality were also decreased after SE infection (P < 0.05). SE readily colonized the stroma, small follicle, isthmus, and vagina in the reproductive tracts of susceptible ducks. Immunoglobulin (IgA, IgG, IgM) levels were higher in susceptible ducks compared with resistant birds (P < 0.05); T-lymphocyte subpopulations (CD3+, CD4+, CD8+) displayed the opposite trend. qRT-PCR analysis was used to examine expression profiles of immune response genes in the reproductive tract of infected ducks. The analysis revealed that immune genes, including toll-like receptors (TLR2, TLR4-5, TLR15, TLR21), NOD-like receptors (NOD1, NLRX1, NLRP12), avian β-defensins (AvβD4-5, AvβD7, AvβD12), cytokines (IL-6, IL-1β, IFN-γ), and MyD88 were markedly upregulated in the reproductive tracts of SE-infected ducks (all P < 0.05); TLR3, TLR7, NLRC3, NLRC5, and TNF-α were significantly downregulated. These results revealed that SE infection promoted lower egg production and quality, and altered the expression of TLRs, NLRs, AvβDs, and cytokine family genes. These findings provide a basis for further investigation of the physiological and immune mechanisms of SE infection in laying ducks.


Author(s):  
Ainhoa Arrieta-Gisasola ◽  
Aitor Atxaerandio Landa ◽  
Javier Garaizar ◽  
Joseba Bikandi ◽  
José Karkamo ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 700
Author(s):  
Franziska Neumann ◽  
Ruben Rose ◽  
Janine Römpke ◽  
Olaf Grobe ◽  
Thomas Lorentz ◽  
...  

The humoral immunity after SARS-CoV-2 infection or vaccination was examined. Convalescent sera after infection with variants of concern (VOCs: B.1.1.7, n = 10; B.1.351, n = 1) and sera from 100 vaccinees (Pfizer/BioNTech, BNT162b2, n = 33; Moderna, mRNA-1273, n = 11; AstraZeneca, ChAdOx1 nCoV-19/AZD1222, n = 56) were tested for the presence of immunoglobulin G (IgG) directed against the viral spike (S)-protein, its receptor-binding domain (RBD), the nucleoprotein (N) and for virus-neutralizing antibodies (VNA). For the latter, surrogate assays (sVNT) and a Vero-cell based neutralization test (cVNT) were used. Maturity of IgG was determined by measuring the avidity in an immunoblot (IB). Past VOC infection resulted in a broad reactivity of anti-S IgG (100%), anti-RBD IgG (100%), and anti-N IgG (91%), while latter were absent in 99% of vaccinees. Starting approximately two weeks after the first vaccine dose, anti-S IgG (75–100%) and particularly anti-RBD IgG (98–100%) were detectable. After the second dose, their titers increased and were higher than in the convalescents. The sVNT showed evidence of VNA in 91% of convalescents and in 80–100%/100% after first/second vaccine dose, respectively. After the second dose, an increase in VNA titer and IgGs of high avidity were demonstrated by cVNT and IB, respectively. Re-vaccination contributes to a more robust immune response.


Sign in / Sign up

Export Citation Format

Share Document