Dynamic mechanical analysis and dynamic infrared linear dichroism study of the frequency-dependent viscoelastic behavior of a poly(ester urethane)

2006 ◽  
Vol 42 (1) ◽  
pp. 74-77
Author(s):  
Yanqia Wang ◽  
Richard A. Palmer ◽  
Jon R. Schoonover ◽  
Steven R. Aubuchon
2021 ◽  
Author(s):  
Stéphane André ◽  
Julien Boisse ◽  
Camille Noûs

International audience FFT-based solvers are increasingly used by many researcher groups interested in modelling the mechanical behavior associated to a heterogeneous microstructure. A development is reported here that concerns the viscoelastic behavior of composite structures generally studied experimentally through Dynamic Mechanical Analysis (DMA). A parallelized computation code developed under complex-valued quantities provides virtual DMA experiments directly in the frequency domain on a heterogenous system described by a voxel grid of mechanical properties. The achieved precision and computation times are very good. An effort has been made to show the application of such virtual DMA tool starting from two examples found in the literature: the modelling of glassy/amorphous systems at a small scale and the modelling of experimental data obtained in temperature sweeping mode by DMA on a particulate composite made of glass beads and a polystyrene matrix, at a larger scale. Both examples show how virtual DMA can contribute to question, analyze, understand relaxation phenomena either on the theoretical or experimental point of view.


Solids ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 108-120
Author(s):  
Muhammad Ahsan Bashir

Dynamic mechanical analysis (DMA) provides reliable information about the viscoelastic behavior of neat and filled polymers. The properties of filled polymers are relevant to different industries as protective organic coatings, composites etc. Interfacial interactions in filled polymers play an important role in determining their bulk properties and performance during service life. In this brief review article, studies that used DMA to characterize the interfacial interactions in filled polymers have been reviewed. The available open literature provides a mixed opinion about the influence of interfacial interactions on the glass transition temperature of filled polymers. Nevertheless, it appears that in the case of strong interfacial interactions between the filler particles and the polymeric matrix, the peak value of tan δ is reduced in comparison to that of a filled polymer where these interactions are weak.


Sign in / Sign up

Export Citation Format

Share Document