gga-miR-454 suppresses infectious bursal disease virus (IBDV) replication via directly targeting IBDV genomic segment B and cellular Suppressors of Cytokine Signaling 6 (SOCS6)

2018 ◽  
Vol 252 ◽  
pp. 29-40 ◽  
Author(s):  
Mengjiao Fu ◽  
Bin Wang ◽  
Xiang Chen ◽  
Zhiyuan He ◽  
Yongqiang Wang ◽  
...  
2017 ◽  
Vol 92 (1) ◽  
Author(s):  
Mengjiao Fu ◽  
Bin Wang ◽  
Xiang Chen ◽  
Zhiyuan He ◽  
Yongqiang Wang ◽  
...  

ABSTRACTMicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally through silencing or degrading their targets, thus playing important roles in the immune response. However, the role of miRNAs in the host response against infectious bursal disease virus (IBDV) infection is not clear. In this study, we show that the expression of a series of miRNAs was significantly altered in DF-1 cells after IBDV infection. We found that the miRNA gga-miR-130b inhibited IBDV replication via targeting the specific sequence of IBDV segment A and enhanced the expression of beta interferon (IFN-β) by targeting suppressors of cytokine signaling 5 (SOCS5) in host cells. These findings indicate that gga-miR-130b-3p plays a crucial role in host defense against IBDV infection.IMPORTANCEThis work shows that gga-miR-130b suppresses IBDV replication via directly targeting the viral genome and cellular SOCS5, the negative regulator for type I interferon expression, revealing the mechanism underlying gga-miR-130-induced inhibition of IBDV replication. This information will be helpful for the understanding of how host cells combat pathogenic infection by self-encoded small RNA and furthers our knowledge of the role of microRNAs in the cell response to viral infection.


Virology ◽  
1988 ◽  
Vol 163 (1) ◽  
pp. 240-242 ◽  
Author(s):  
Margaret M. Morgan ◽  
Ian G. Macreadie ◽  
Vincent R. Harley ◽  
Peter J. Hudson ◽  
Ahmed A. Azad

1996 ◽  
Vol 42 (1) ◽  
pp. 93-97 ◽  
Author(s):  
B. Qian ◽  
F. S. B. Kibenge

Previous analyses of the two serotypes of infectious bursal disease virus (IBDV) have demonstrated the correlation between antigenicity and similarities of nucleotide and amino acid sequences of the VP2 coding region in genome segment A. Restriction fragment profiles of genomic segment A cDNA of five IBDV isolates (QC-2 and QT-1 of serotype 1, SK9, and Nos. 39 and 52 of serotype 2) were determined in order to establish the genetic relationship of these viruses to other avibirnaviruses. The restriction fragment profiles using three of seven restriction enzymes (Sad which cuts in the VP2 region, DraIII which cuts in the VP3 region, and EcoRI which cuts in the VP4 region) were used to place QC-2, QT-1, SK9, No. 39, and No. 52 within the phylogenetic tree among seven other avibirnaviruses of known sequence. The two IBDV serotypes corresponded to two genotypes on the basis of the presence or absence of the SacI restriction site. The serotype 1 cluster of strains was further differentiated into five minor clusters on the basis of the PstI, EcoRI, BamHI, HindIII, DraIII, and Bsu36I restriction sites, which emphasized the geographical origins of the strains. It is concluded that restriction analysis of cDNA of the whole viral genomic segment A allows differentiation of IBDV isolates on the basis of their antigenicity and geographical origin.Key words: phylogeny, avibirnavirus, geographical origin.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 142
Author(s):  
Yulong Wang ◽  
Nan Jiang ◽  
Linjin Fan ◽  
Li Gao ◽  
Kai Li ◽  
...  

Infectious bursal disease (IBD), an immunosuppressive disease of young chickens, is caused by infectious bursal disease virus (IBDV). Novel variant IBDV (nVarIBDV), a virus that can evade immune protection against very virulent IBDV (vvIBDV), is becoming a threat to the poultry industry. Therefore, nVarIBDV-specific vaccine is much needed for nVarIBDV control. In this study, the VP2 protein of SHG19 (a representative strain of nVarIBDV) was successfully expressed using an Escherichia coli expression system and further purified via ammonium sulfate precipitation and size-exclusion chromatography. The purified protein SHG19-VP2-466 could self-assemble into 25-nm virus-like particle (VLP). Subsequently, the immunogenicity and protective effect of the SHG19-VLP vaccine were evaluated using animal experiments, which indicated that the SHG19-VLP vaccine elicited neutralization antibodies and provided 100% protection against the nVarIBDV. Furthermore, the protective efficacy of the SHG19-VLP vaccine against the vvIBDV was evaluated. Although the SHG19-VLP vaccine induced a comparatively lower vvIBDV-specific neutralization antibody titer, it provided good protection against the lethal vvIBDV. In summary, the SHG19-VLP candidate vaccine could provide complete immune protection against the homologous nVarIBDV as well as the heterologous vvIBDV. This study is of significance to the comprehensive prevention and control of the recent atypical IBD epidemic.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 664
Author(s):  
Yufang Meng ◽  
Xiaoxue Yu ◽  
Chunxue You ◽  
Wenjuan Zhang ◽  
Yingfeng Sun ◽  
...  

Infectious bursal disease virus (IBDV) infection causes pathogenicity and mortality in chickens, leading to huge economic losses in the poultry industry worldwide. Studies of host-virus interaction can help us to better understand the viral pathogenicity. As a highly conservative host factor, heat shock protein 70 (Hsp70) is observed to be involved in numerous viral infections. However, there is little information about the role of chicken Hsp70 (cHsp70) in IBDV infection. In the present study, the increased expression of cHsp70 was observed during IBDV-infected DF-1 cells. Further studies revealed that Hsp70 had similar locations with the viral double-stranded RNA (dsRNA), and the result of pull-down assay showed the direct interaction between cHsp70 with dsRNA, viral proteins (vp)2 and 3, indicating that maybe cHsp70 participates in the formation of the replication and transcription complex. Furthermore, overexpression of cHsp70 promoted IBDV production and knockdown of cHsp70 using small interfering RNAs (siRNA) and reducedviral production, implying the necessity of cHsp70 in IBDV infection. These results reveal that cHsp70 is essential for IBDV infection in DF-1 cells, suggesting that targeting cHsp70 may be applied as an antiviral strategy.


Sign in / Sign up

Export Citation Format

Share Document