scholarly journals Relationship between respiratory quotient, nitrification, and nitrous oxide emissions in a forced aerated composting process

2015 ◽  
Vol 42 ◽  
pp. 10-16 ◽  
Author(s):  
Hirofumi Tsutsui ◽  
Taku Fujiwara ◽  
Daisuke Inoue ◽  
Ryusei Ito ◽  
Kazutsugu Matsukawa ◽  
...  
2010 ◽  
Vol 76 (5) ◽  
pp. 1555-1562 ◽  
Author(s):  
Koki Maeda ◽  
Sakae Toyoda ◽  
Ryosuke Shimojima ◽  
Takashi Osada ◽  
Dai Hanajima ◽  
...  

ABSTRACT A molecular analysis of betaproteobacterial ammonia oxidizers and a N2O isotopomer analysis were conducted to study the sources of N2O emissions during the cow manure composting process. Much NO2 −-N and NO3 −-N and the Nitrosomonas europaea-like amoA gene were detected at the surface, especially at the top of the composting pile, suggesting that these ammonia-oxidizing bacteria (AOB) significantly contribute to the nitrification which occurs at the surface layer of compost piles. However, the 15N site preference within the asymmetric N2O molecule (SP = δ15Nα − δ15Nβ, where 15Nα and 15Nβ represent the 15N/14N ratios at the center and end sites of the nitrogen atoms, respectively) indicated that the source of N2O emissions just after the compost was turned originated mainly from the denitrification process. Based on these results, the reduction of accumulated NO2 −-N or NO3 −-N after turning was identified as the main source of N2O emissions. The site preference and bulk δ15N results also indicate that the rate of N2O reduction was relatively low, and an increased value for the site preference indicates that the nitrification which occurred mainly in the surface layer of the pile partially contributed to N2O emissions between the turnings.


2011 ◽  
Vol 37 (9) ◽  
pp. 1666-1675
Author(s):  
Hai-Ming TANG ◽  
Xiao-Ping XIAO ◽  
Wen-Guang TANG ◽  
Guang-Li YANG

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


Eos ◽  
2008 ◽  
Vol 89 (51) ◽  
pp. 529 ◽  
Author(s):  
Stephen J. Del Grosso ◽  
Tom Wirth ◽  
Stephen M. Ogle ◽  
William J. Parton

2021 ◽  
Author(s):  
Debasish Saha ◽  
Jason P. Kaye ◽  
Arnab Bhowmik ◽  
Mary Ann Bruns ◽  
John M. Wallace ◽  
...  

2021 ◽  
Author(s):  
Arezoo Taghizadeh-Toosi ◽  
Baldur Janz ◽  
Rodrigo Labouriau ◽  
Jørgen E. Olesen ◽  
Klaus Butterbach-Bahl ◽  
...  

2021 ◽  
Vol 156 ◽  
pp. 108197
Author(s):  
Hollie E. Emery ◽  
John H. Angell ◽  
Akaash Tawade ◽  
Robinson W. Fulweiler

Author(s):  
Muhammad Khalid Anser ◽  
Danish Iqbal Godil ◽  
Muhammad Azhar Khan ◽  
Abdelmohsen A. Nassani ◽  
Khalid Zaman ◽  
...  

2021 ◽  
Vol 24 ◽  
pp. e00362
Author(s):  
Liliana I. Picone ◽  
Cimelio Bayer ◽  
Cecilia C. Videla ◽  
Roberto H. Rizzalli ◽  
Sheila M. Casanave Ponti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document