Food waste from a university campus in the Middle East: Drivers, composition, and resource recovery potential

2019 ◽  
Vol 98 ◽  
pp. 14-20 ◽  
Author(s):  
Ali H. Abdelaal ◽  
Gordon McKay ◽  
Hamish R. Mackey
2014 ◽  
Vol 34 (9) ◽  
pp. 1627-1636 ◽  
Author(s):  
Elisa Allegrini ◽  
Alberto Maresca ◽  
Mikael Emil Olsson ◽  
Maria Sommer Holtze ◽  
Alessio Boldrin ◽  
...  

1975 ◽  
Vol 9 (3-4) ◽  
pp. 121-124 ◽  
Author(s):  
Robert C. Meier ◽  
Douglas L. Maclachlan ◽  
Reza Moinpour

2021 ◽  
Vol 4 ◽  
Author(s):  
Reiner Braun ◽  
Rushikesh Padsala ◽  
Tahereh Malmir ◽  
Soufia Mohammadi ◽  
Ursula Eicker

The paper explains a workflow to simulate the food energy water (FEW) nexus for an urban district combining various data sources like 3D city models, particularly the City Geography Markup Language (CityGML) data model from the Open Geospatial Consortium, Open StreetMap and Census data. A long term vision is to extend the CityGML data model by developing a FEW Application Domain Extension (FEW ADE) to support future FEW simulation workflows such as the one explained in this paper. Together with the mentioned simulation workflow, this paper also identifies some necessary FEW related parameters for the future development of a FEW ADE. Furthermore, relevant key performance indicators are investigated, and the relevant datasets necessary to calculate these indicators are studied. Finally, different calculations are performed for the downtown borough Ville-Marie in the city of Montréal (Canada) for the domains of food waste (FW) and wastewater (WW) generation. For this study, a workflow is developed to calculate the energy generation from anaerobic digestion of FW and WW. In the first step, the data collection and preparation was done. Here relevant data for georeferencing, data for model set-up, and data for creating the required usage libraries, like food waste and wastewater generation per person, were collected. The next step was the data integration and calculation of the relevant parameters, and lastly, the results were visualized for analysis purposes. As a use case to support such calculations, the CityGML level of detail two model of Montréal is enriched with information such as building functions and building usages from OpenStreetMap. The calculation of the total residents based on the CityGML model as the main input for Ville-Marie results in a population of 72,606. The statistical value for 2016 was 89,170, which corresponds to a deviation of 15.3%. The energy recovery potential of FW is about 24,024 GJ/year, and that of wastewater is about 1,629 GJ/year, adding up to 25,653 GJ/year. Relating values to the calculated number of inhabitants in Ville-Marie results in 330.9 kWh/year for FW and 22.4 kWh/year for wastewater, respectively.


REAKTOR ◽  
2017 ◽  
Vol 16 (3) ◽  
pp. 141
Author(s):  
Cindy Rianti Priadi ◽  
Iftita Rahmatika ◽  
Chihiya Fitria ◽  
Dwica Wulandari ◽  
Setyo Sarwanto Moersidik

BIOGAS ENERGY AND FERTILIZING POTENTIAL FROM PAPER SLUDGE Paper sludge contains potential as energy and fertilizer due to the high amount of C, N and P. The aims of this study were to investigate resource recovery potential through biogas production from paper sludge only and with cow manure as co-substrate for 30-45 days in batch anaerobic digestion reactor. In addition, the fertilizer potential from digestate was also tested in Vetiveria zizanioides. Co-digestion with cow manure yielded higher methane gas up to 380 CH4/g VS due to a more optimum C/N ratio. Vetiver plants grown on digestate relatively showed the high growth performance after 4 weeks. The heavy metal accumulation from digestate was still in tolerable amount since the growth rate was not significantly different with the plant grown in fertilizer. Therefore, resource recovery technology can be an option to recover C, N and P in paper sludge to achieve sustainable waste management.  Keywords: ananerobic digestion; biogas;  fertilizer; paper sludge AbstrakLumpur dari Air Limbah industri kertas memiliki C, N dan P yang tinggi sehingga berpotensi menghasilkan energi dan menjadi pupuk, Penelitian ini bertujuan untuk meneliti pemulihan sumber daya (resource recovery) melalui produksi biogas dari lumpur kertas tanpa dan dengan ko-substrat kotoran sapi selama 30-45 hari dalam reaktor batch anaerobic digestion. Selanjutnya potensi pupuk dari digestat juga diuji dengan tumbuhan akar wangi (Vetiveria zizanioides). Setelah 45 hari, lumpur kertas dengan kotoran sapi menghasikan gas metana yang lebih besar, yaitu 380 CH4/g VS. Tanaman akar wangi yang ditanam dengan dengan digestat R2 tumbuh relatif tinggi setelah 4 minggu. Akumulasi logam berat juga masih dalam batas aman karena laju pertumbuhannya yang masih sebanding dengan tanaman yang diberi pupuk. Oleh karena itu, pemulihan sumber daya dapat diterapkan untuk memanfaatkan C, N dan P yang terkandung dalam lumpur kertas sebagai usaha pengelolaan limbah berkelanjutan.  Kata Kunci: biogas; digestasi anaerobik; lumpur kertas; pupuk 


2021 ◽  
pp. 327-354
Author(s):  
Gabriel Capson-Tojo ◽  
Renaud Escudié ◽  
Jean-Philippe Steyer ◽  
Angel Robles

2017 ◽  
Vol 75 (7) ◽  
pp. 1659-1666 ◽  
Author(s):  
T. Bressani-Ribeiro ◽  
E. M. F. Brandt ◽  
K. G. Gutierrez ◽  
C. A. Díaz ◽  
G. B. Garcia ◽  
...  

This paper aims to present perspectives for energy (thermal and electric) and nutrient (N and S) recovery in domestic sewage treatment systems comprised of upflow anaerobic sludge blanket (UASB) reactors followed by sponge-bed trickling filters (SBTF) in developing countries. The resource recovery potential was characterized, taking into account 114 countries and a corresponding population of 968.9 million inhabitants living in the tropical world, which were grouped into three desired ranges in terms of cities’ size. For each of these clusters, a technological arrangement flow-sheet was proposed, depending on their technical and economic viability from our best experience. Considering the population living in cities over 100, 000 inhabitants, the potential of energy and nutrient recovery via the sewage treatment scheme would be sufficient to generate electricity for approximately 3.2 million residents, as well as thermal energy for drying purposes that could result in a 24% volume reduction of sludge to be transported and disposed of in landfills. The results show that UASB/SBTF systems can play a very important role in the sanitation and environmental sector towards more sustainable sewage treatment plants.


Sign in / Sign up

Export Citation Format

Share Document