scholarly journals Potensi Biogas dan Pupuk dari Limbah Lumpur Kertas

REAKTOR ◽  
2017 ◽  
Vol 16 (3) ◽  
pp. 141
Author(s):  
Cindy Rianti Priadi ◽  
Iftita Rahmatika ◽  
Chihiya Fitria ◽  
Dwica Wulandari ◽  
Setyo Sarwanto Moersidik

BIOGAS ENERGY AND FERTILIZING POTENTIAL FROM PAPER SLUDGE Paper sludge contains potential as energy and fertilizer due to the high amount of C, N and P. The aims of this study were to investigate resource recovery potential through biogas production from paper sludge only and with cow manure as co-substrate for 30-45 days in batch anaerobic digestion reactor. In addition, the fertilizer potential from digestate was also tested in Vetiveria zizanioides. Co-digestion with cow manure yielded higher methane gas up to 380 CH4/g VS due to a more optimum C/N ratio. Vetiver plants grown on digestate relatively showed the high growth performance after 4 weeks. The heavy metal accumulation from digestate was still in tolerable amount since the growth rate was not significantly different with the plant grown in fertilizer. Therefore, resource recovery technology can be an option to recover C, N and P in paper sludge to achieve sustainable waste management.  Keywords: ananerobic digestion; biogas;  fertilizer; paper sludge AbstrakLumpur dari Air Limbah industri kertas memiliki C, N dan P yang tinggi sehingga berpotensi menghasilkan energi dan menjadi pupuk, Penelitian ini bertujuan untuk meneliti pemulihan sumber daya (resource recovery) melalui produksi biogas dari lumpur kertas tanpa dan dengan ko-substrat kotoran sapi selama 30-45 hari dalam reaktor batch anaerobic digestion. Selanjutnya potensi pupuk dari digestat juga diuji dengan tumbuhan akar wangi (Vetiveria zizanioides). Setelah 45 hari, lumpur kertas dengan kotoran sapi menghasikan gas metana yang lebih besar, yaitu 380 CH4/g VS. Tanaman akar wangi yang ditanam dengan dengan digestat R2 tumbuh relatif tinggi setelah 4 minggu. Akumulasi logam berat juga masih dalam batas aman karena laju pertumbuhannya yang masih sebanding dengan tanaman yang diberi pupuk. Oleh karena itu, pemulihan sumber daya dapat diterapkan untuk memanfaatkan C, N dan P yang terkandung dalam lumpur kertas sebagai usaha pengelolaan limbah berkelanjutan.  Kata Kunci: biogas; digestasi anaerobik; lumpur kertas; pupuk 

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2311 ◽  
Author(s):  
Spyridon Achinas ◽  
Yu Li ◽  
Vasileios Achinas ◽  
Gerrit Jan Willem Euverink

This article intends to promote the usage of potato peels as efficient substrate for the anaerobic digestion process for energy recovery and waste abatement. This study examined the performance of anaerobic digestion of potato peels in different inoculum-to-substrate ratios. In addition, the impact of combined treatment with cow manure and pretreatment of potato peels was examined. It was found that co-digestion of potato peel waste and cow manure yielded up to 237.4 mL CH4/g VSadded, whereas the maximum methane yield from the mono-digestion of potato peels was 217.8 mL CH4/g VSadded. Comparing the co-digestion to mono-digestion of potato peels, co-digestion in PPW/CM ratio of 60:40 increased the methane yield by 10%. In addition, grinding and acid hydrolysis applied to potato peels were positively effective in increasing the methane amount reaching 260.3 and 283.4 mL CH4/g VSadded respectively. Likewise, compared to untreated potato peels, pretreatment led to an elevation of the methane amount by 9% and 17% respectively and alleviated the kinetics of biogas production.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


Author(s):  
B.E. Eboibi ◽  
K.O. Adiotomre ◽  
F. Onobrudu ◽  
E. Osioh

In this paper, cow manure fluid was used as inoculums to investigate biogas production rate from anaerobic digestion of cassava peel at mesophilic temperature (280C). The anaerobic experiment was conducted using six batch digesters (D1, D2, D3, D4, D5 and D6) each of 20L capacity for 40-day hydraulic retention. Each digester, was loaded with 5kg of cassava peel (CP) and 0%, 10%, 20%, 30%, 40% and 50% of inoculum to CP. Hashimoto model was used to obtain the digestion kinetic parameters. The results of the study showed that inoculums influenced the rate of biogas production, showing variations in biogas production, correlation coefficient (R2) and in first-order decay constant (k). The average cumulative biogas production was in the range of ~2358 to 4010ml/kgVS for 10% to 50% inoculum. The R2 and k for D1 was 0.959 and 0.359 D1 (without inoculum), 0.990 and 0.371 for D2 (10% inoculum) and 0.991 and 0.371 for D3 (20% inoculum), 0.951 and 0.356 for D4 (30% inoculum), 0.992 and 0.372 for D5 (40% inoculum), and 0.990 and 0.371 was obtained for D6 loaded with 50% inoculum. Despite variation in biogas yields from different inoculums, biogas production obtained from anaerobic digesters loaded with inoculums were still lower compared with that without inoculum.


2018 ◽  
Vol 14 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Zulfah Zulkifli ◽  
Nazaitulshila Rasit ◽  
Noor Azrimi Umor ◽  
Shahrul Ismail

Lignocellulosic material consists of lignin, cellulose and hemicellulose. Converting lignocellulosic biomass such as cow manure (CM) into value-added products provides a potential alternative. Hydrolysis of cellulose and hemicellulose is a limiting step during Anaerobic Digestion (AD) of lignocellulosic biomass. Lignin in lignocellulosic biomass is the barrier for hydrolysis, thus limits the biogas production. In this study, the effect of A.Fumigatus SK1 and Trichoderma sp. on enzymatic pre-treatment of CM was investigated with respect to the biogas production. Three set of anaerobic digestion assays were carried out, with a working volume of 500 mL at 35 ± 2°C and 120 rpm. The first set of fermentation contained untreated CM. The second set of fermentation involved addition of A.Fumigatus SK1, and the last set contained Trichoderma sp. Several analysis were conducted to determine the biomethane potential (BMP), anaerobic biodegradability, reducing sugars concentration and lignin removal of CM before and after pre-treatment. Result showed that, among both evaluated pre-treatment methods, CM treated with Trichoderma sp. gave the highest methane potential with 0.023 LCH4-STP g VS-1 compared to CM treated with A.Fumigatus SK1(0.011 LCH4-STP g VS-1). A good correlation have been found in this study between lignin removal and reducing sugar produced where, the total lignin removal after treated with Trichoderma sp. was 60% followed by 43% after treated with A.Fumigatus SK1.The reducing sugar produced after pre-treated with Trichoderma sp. and A.Fumigatus SK1 was about 9.59 and 4.91 μmol glucose, respectively. These results collectively suggested that CM treated with Trichoderma sp. could be a better pre-treatment method for the higher methane production in anaerobic mono-digestion process.


2014 ◽  
Vol 9 (9) ◽  
pp. 293-296 ◽  
Author(s):  
Sun Peipei ◽  
Zhang Wudi ◽  
Yin Fang ◽  
Zhao Xingling ◽  
Liu Jing ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 14-21
Author(s):  
Sri Ismiyati Damayanti ◽  
Dian Fitriani Astiti ◽  
Chandra Wahyu Purnomo ◽  
Sarto Sarto ◽  
Wiratni Budhijanto

Two-stage anaerobic fluidized bed is an innovation in anaerobic digestion technology intended to handle liquid waste with high organic loading and complex substrate. The process is based on separation between acidogenic/acetogenic and methanogenic processes. The first stage is anaerobic process to convert substrate (represented as soluble chemical oxygen demand/sCOD) into volatile fatty acids (VFA). The second stage is methanogenic process to convert VFA into biogas. This study aimed to separate acidogenic/acetogenic and methanogenic processes by means of limited injection of air (micro-aeration) and inoculum selection. Micro-aeration was introduced in acidogenic/acetogenic stage because the relevant microbes were facultative so that the obligate anaerobic methanogens will be suppressed. On the other hand, the methanogenic reactor was kept completely anaerobic to ensure methanogenic dominance over acidogenic/acetogenic ones. Two sources of inoculums were used in this study, i.e. anaerobically digested biodiesel waste and anaerobically digested cow manure. Both inoculums were taken from active biogas reactor treating biodiesel waste and cow manure, respectively. Experiments were run in batch reactors treating palm oil mill effluent (POME) as the substrate for the acidogenic/acetogenic reactor. After the reaction in the first stage reached the minimum substrate concentration, the content of the reactor was used as the substrate for the methanogenic reactor as the second stage. Routine measurements were taken for sCOD and VFA concentrations, biogas production, and methane concentration in the biogas. Results confirmed that micro-aeration maintained good performance of acidogenic/acetogenic process, which was indicated by peaks in VFA accumulation, while suppressing methanogenic activities as no methane produced in this stage. Digested biodiesel waste was superior inoculum to be compared to digested cow manure with respect to sCOD removal. In the methanogenic stage, digested biodiesel waste also performed better as inoculum as it led to higher VFA conversion, higher biogas production rate, and higher methane content in the biogas. 


2021 ◽  
Vol 9 ◽  
Author(s):  
Mónica Amado ◽  
Cristian Barca ◽  
Mario A. Hernández ◽  
Jean-Henry Ferrasse

This study provides the first overview in Colombia on energy recovery potential by anaerobic digestion (AD) and dark fermentation (DF) of three different residual biomasses: coffee mucilage (CFM), cocoa mucilage (CCM), and swine manure (SM). First, AD and DF models were developed based on the ADM1 model. Then, simulated biogas production yields were compared to experimental data to validate the models. The results of comparative simulations indicate that energy recovery potentials from biogas for the different Colombian departments range from 148 to 48,990 toe, according to the local production amounts of CFM, CCM, and SM in 2017. The study provides crucial information that can be used to assess the best design, operation mode, and locations of AD and DF plants in Colombia. The results indicate that biogas production performances and energy recovery yields improve by increasing CFM/SM and/or CCM/SM ratios of the feed, and by increasing organic load from 2 to 26 gCOD∙l−1.


Author(s):  
Autumn R. Elniski ◽  
Siddharth G. Chatterjee ◽  
Chanchal Mondal ◽  
Klaus Doelle

Anaerobic digestion can utilize renewable resources to produce energy in the form of biogas. Cow manure inoculum contains the microorganisms needed for this application and unrecycled paper waste can be used as a substrate. The use of these feedstocks together is not well studied. Finding ideal operating parameters and modelling biogas production is vital for future integration of anaerobic digestion. The use of various models when examining anaerobic digestion is important to ensure the best models are used for future research and industrial applications. Office paper and cow manure were combined at the different substrate to inoculum ratios with a total solids content of 6% at 38.4°C for 15 days. Four models (Time-Lag, No-Lag, Modified Gompertz, and Modified Logistic) were fitted to the experimental data to find which model best represented each biogas production process. Models varied in the accuracy of their fit to the data and no single model had the lowest RMSE values for each treatment. The digester containing a paper to manure ratio of 2:1 produced the most biogas (82 mL biogas/g VS), but the 5:1 reactor had the greatest biogas production potential over a longer period based on the model parameters (maximum cumulative biogas yield and biogas production potential). More biogas was produced in this study compared to other works reported in the literature, showing that this combination of co-digestion substrates could be expanded upon in the future. New models need to be examined or developed for these systems to better represent this co-digestion process for future research and commercial applications.


Author(s):  
Xiangfeng Xiong ◽  
Ping Ning ◽  
Cheng Zhou ◽  
Guangfei Qu ◽  
Lijuan Jia

Sign in / Sign up

Export Citation Format

Share Document