Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control

2005 ◽  
Vol 39 (19) ◽  
pp. 4779-4789 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Myong-Jin Yu
2007 ◽  
Vol 19 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Ming-quan YAN ◽  
Dong-sheng WANG ◽  
Bao-you SHI ◽  
Qun-shan WEI ◽  
Jiu-hui QU ◽  
...  

2004 ◽  
Vol 4 (5-6) ◽  
pp. 43-48 ◽  
Author(s):  
Simon A. Parsons ◽  
Bruce Jefferson ◽  
Emma H. Goslan ◽  
Peter R. Jarvis ◽  
David A. Fearing

The characterisation and treatment of natural organic matter are becoming more important to the water utilities in the UK and around the world. This paper looks at the relationship between bulk and fractionated organic material and the performance of conventional water treatment processes.


2001 ◽  
Vol 1 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Don Bursill

On and follow Natural organic matter (NOM) derived from soil and vegetation in water catchments is the key factor influencing most, if not all water treatment processes. The structure of the NOM and its involvement in water treatment processes requires better understanding. It seems likely that a better understanding of NOM reactions could lead to far better predictive capacity for water treatment designers and operators. Certainly the removal of NOM as a first step to the production of drinking water has many attractions. This paper provides an overview of work done by the author and many of his colleagues to advance this issue.


2015 ◽  
Vol 15 (3) ◽  
pp. 442-455 ◽  
Author(s):  
Yue Zhang ◽  
Xinhua Zhao ◽  
Xinbo Zhang ◽  
Sen Peng

In the past decades, natural organic matter (NOM), which is a complex heterogeneous mixture of organic materials that are commonly present in all surface, ground and soil waters, has had an adverse effect on drinking water treatment. The existence of NOM results in many problems in drinking water treatment processes, and the properties and amount of NOM can significantly affect the efficiency of these processes. NOM not only influences the water quality with respect to taste, color and odor problems, but it also reacts with disinfectants, increasing the amount of disinfection by-products. NOM can be removed from drinking water via several treatment processes, but different drinking water treatment processes have diverse influences on NOM removal and the safety of the drinking water. Several treatment options, including coagulation, adsorption, oxidation, membrane and biological treatment, have been widely used in drinking water purification processes. Therefore, it is of great importance to be able to study the influence of different treatment processes on NOM in raw waters. The present review focuses on the methods, including coagulation, adsorption, oxidation, membrane, biological treatment processes and the combination of different treatment processes, which are used for removing NOM from drinking water.


Water SA ◽  
2020 ◽  
Vol 46 (1 January) ◽  
Author(s):  
Welldone Moyo ◽  
Nhamo Chaukura ◽  
Machawe M Motsa ◽  
Titus AM Msagati ◽  
Bhekie B Mamba ◽  
...  

The removal dynamics of biodegradable dissolved organic carbon (BDOC) and natural organic matter (NOM) polarity fractions at a water treatment plant (WTP) in South Africa was studied using UV-Vis absorbance, fluorescence excitation-emission matrix, and two-dimensional synchronous fluorescence spectroscopy (SFS). This study gave insights into the transformation of NOM due to treatment processes. The objectives of the study were: (i) to use chemometric analysis and two-dimensional SFS correlations to investigate the evolution of NOM arising from treatment processes, and (ii) to access the chemical profile dynamics of polarity and BDOC fractions throughout the treatment train. The UV254 absorbance, which indicates aromaticity, reduced by 45%  along the WTP. Gaussian fitting of UV-Vis data showed a decreasing trend in intensity and number of bands along the treatment process. The removal efficiency of NOM components followed the order: humic-like (HL) > tyrosine-like (TYL) > fulvic-like (FL) > tryptophan-like (TPL) > microbial-like (MBL).  At the source, the relative distribution of the hydrophobic (HPO), hydrophilic (HPI), and transphilic (TPI) fractions was 45%, 31%, and 24%, respectively. The HPI was recalcitrant to treatment, and the TYL component of the HPI fraction was conjectured to be a disinfection byproduct limiting reagent. The HL and FL components of the BDOC fraction were the major substrates for bacterial growth. According to two-dimensional-SFS correlation, TYL, TPL, and MBL varied concurrently across the treatment stages. Used for the first time in South Africa, the robustness of a multi-dimensional approach of optical methods coupled with chemometric tools for the assessment of the fate of NOM along the treatment processes was revealed by this study.


Sign in / Sign up

Export Citation Format

Share Document