Exploration of remediation of acid rock drainage with clinoptilolite as sorbent in a slurry bubble column for both heavy metal capture and regeneration

2006 ◽  
Vol 40 (18) ◽  
pp. 3359-3366 ◽  
Author(s):  
Heping Cui ◽  
Loretta Y. Li ◽  
John R. Grace
2010 ◽  
Vol 50 (1) ◽  
pp. 158-163 ◽  
Author(s):  
Wanjing Xu ◽  
Loretta Y. Li ◽  
John R. Grace

2017 ◽  
Vol 16 (9) ◽  
pp. 2089-2096
Author(s):  
Artwell Kanda ◽  
George Nyamadzawo ◽  
Jephita Gotosa ◽  
Nathan Nyamutora ◽  
Willis Gwenzi

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2149-2152 ◽  
Author(s):  
A. Grappelli ◽  
L. Campanella ◽  
E. Cardarelli ◽  
F. Mazzei ◽  
M. Cordatore ◽  
...  

Experiments on the real possibility of employing microorganisms to capture inorganic polluting substances, mainly heavy metals from urban and industrial wastes, are running using bacteria biomass. Many strains of Arthrobacter spp., gram-negative bacteria, diffused in the soil also inacondition of environmental stresses, have been proved to be particulary effective in heavy metal capture (Cd, Cr, Pb, Cu, Zn). The active and passive processes in accumulation of metals by bacteria were studied. Our experiments have been done on fluid biomass and on a membrane both for practical use and for an easy recovery.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


Sign in / Sign up

Export Citation Format

Share Document