metal capture
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Jing Wang ◽  
Tianshu Zhang ◽  
Kangxuan Xia ◽  
Chuanhui Huang ◽  
Lizhi Liu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 118 (37) ◽  
pp. e2106197118
Author(s):  
James S. New ◽  
Bahar Kazemi ◽  
Vassilia Spathis ◽  
Mark C. Price ◽  
Richard A. Mathies ◽  
...  

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s−1 up to 3 km ⋅ s−1. Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s−1. Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level—a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


2021 ◽  
Vol 11 (7) ◽  
pp. 2985
Author(s):  
Saverio Latorrata ◽  
Riccardo Balzarotti ◽  
Maria Isabella Adami ◽  
Bianca Marino ◽  
Silvia Mostoni ◽  
...  

Currently, slags from secondary steel production, foundries, and blast furnaces represent a major environmental problem since they end up mainly in landfills, and their valorization would bring undeniable advantages both to environment and economy. Moreover, the removal of heavy metal ions from mines wastewater is one of the challenges of the last decades, and adsorption has been proposed as one of the most promising techniques for this purpose. In this context, the use of alkali-activated slags as sorbent can be a good opportunity to develop low cost, environmentally friendly, and sustainable materials. Accordingly, wastewater decontamination by adsorption over a porous monolithic bed made of alkali-activated hydraulic binders is proposed. Alkali-activated materials were prepared using slags from the metallurgical industry and reacted with an alkaline component (high alumina calcium aluminate cement, CAC 80) at ambient conditions. The obtained monolithic foams were tested to evaluate the uptake efficiency towards metal capture. Solutions containing Cu(II), Fe(III), Ni(II), Mn(II), and simulating the metal concentrations of a real mine effluent were tested, both in single- and multi-ion solutions. Promising capture efficiency, values of 80–100% and of 98–100% in the case of the single ion and of the multi-ion solutions were obtained, respectively.


2021 ◽  
Author(s):  
Miguel A. Rivero-Crespo ◽  
Georgios Toupalas ◽  
Bill Morandi

Porous organic frameworks have shown a number of promising properties; however, their industrial application is usually hampered due to the lability of their linkages (imine, boroxine, etc.). Inspired by the outstanding chemical, mechanical and thermal resistance of the 1D polymer polyphenylene sulfide (PPS), we hypothesized that 2D and 3D poly-arylthioether frameworks would merge the attractive features common to porous frameworks and PPS in a single material. Herein, we report a Pd-catalysed C–S/C–S metathesis-based method to prepare new porous poly-arylthioether frameworks in good yields. The self-correcting nature of the process has enabled the synthesis of new, robust materials with high surface areas. Despite the frameworks’ extreme resistance to harsh chemicals, they can be fully recycled to recover the original building blocks using the same catalytic reaction. In addition, we demonstrate preliminary results showing that these materials have great potential in several environmentally relevant applications including metal capture, metal sensing and heterogeneous catalysis. In a broader context, these results clearly demonstrate the untapped potential of emerging single-bond metathesis reactions in the preparation of new materials.


2021 ◽  
Author(s):  
Miguel A. Rivero-Crespo ◽  
Georgios Toupalas ◽  
Bill Morandi

Porous organic frameworks have shown a number of promising properties; however, their industrial application is usually hampered due to the lability of their linkages (imine, boroxine, etc.). Inspired by the outstanding chemical, mechanical and thermal resistance of the 1D polymer polyphenylene sulfide (PPS), we hypothesized that 2D and 3D poly-arylthioether frameworks would merge the attractive features common to porous frameworks and PPS in a single material. Herein, we report a Pd-catalysed C–S/C–S metathesis-based method to prepare new porous poly-arylthioether frameworks in good yields. The self-correcting nature of the process has enabled the synthesis of new, robust materials with high surface areas. Despite the frameworks’ extreme resistance to harsh chemicals, they can be fully recycled to recover the original building blocks using the same catalytic reaction. In addition, we demonstrate preliminary results showing that these materials have great potential in several environmentally relevant applications including metal capture, metal sensing and heterogeneous catalysis. In a broader context, these results clearly demonstrate the untapped potential of emerging single-bond metathesis reactions in the preparation of new materials.


Sign in / Sign up

Export Citation Format

Share Document