scholarly journals Responses in sediment phosphorus and lanthanum concentrations and composition across 10 lakes following applications of lanthanum modified bentonite

2016 ◽  
Vol 97 ◽  
pp. 101-110 ◽  
Author(s):  
Line Dithmer ◽  
Ulla Gro Nielsen ◽  
Miquel Lürling ◽  
Bryan M. Spears ◽  
Said Yasseri ◽  
...  
Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


Author(s):  
Sara Sandström ◽  
Martyn N. Futter ◽  
David W. O'Connell ◽  
Emma E. Lannergård ◽  
Jelena Rakovic ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1947
Author(s):  
Ling Su ◽  
Chen Zhong ◽  
Lei Gan ◽  
Xiaolin He ◽  
Jinlei Yu ◽  
...  

The application of lanthanum modified bentonite (Phoslock®) and polyaluminium chloride (PAC) is popular in the restoration of European temperate lakes; however, the effects of the application on the concentrations of phosphorus (P) in both the water and the sediments have been poorly evaluated to date. We studied the effects of the application of Phoslock® + PAC on the concentrations of total phosphorus (TP), particulate phosphorus (PP), soluble reactive phosphorus (SRP), total suspended solids (TSS) and chlorophyll a (Chla) in the water, and different P forms in the sediments, in an isolated part of Lake Yanglan. The results showed that the concentrations of TP, PP, SRP, TSS and Chla decreased significantly after the addition of Phoslock® + PAC. Moreover, the concentrations of labile-P, reductant-soluble-P and organic-P in the sediments were also significantly decreased after the Phoslock® + PAC application. However, the concentrations of both the stable apatite-P and residual-P in the sediments after application of Phoslock® + PAC were much higher than the pre-addition values, while the concentrations of metal-oxide-P did not differ significantly between the pre- and post- application conditions. Our findings imply that the combined application of Phoslock® and PAC can be used in the restoration of subtropical shallow lakes, to reduce the concentrations of P in the water and suppress the release of P from the sediments.


Sign in / Sign up

Export Citation Format

Share Document