Variable update strategy to improve water quality forecast accuracy in multivariate data assimilation using the ensemble Kalman filter

2020 ◽  
Vol 176 ◽  
pp. 115711 ◽  
Author(s):  
Sanghyun Park ◽  
Kyunghyun Kim ◽  
Changmin Shin ◽  
Joong-Hyuk Min ◽  
Eun Hye Na ◽  
...  
2013 ◽  
Vol 16 (1) ◽  
pp. 74-94 ◽  
Author(s):  
Gift Dumedah ◽  
Paulin Coulibaly

Data assimilation (DA) methods continue to evolve in the design of streamflow forecasting procedures. Critical components for efficient DA include accurate description of states, improved model parameterizations, and estimation of the measurement error. Information about these components are usually assumed or rarely incorporated into streamflow forecasting procedures. Knowledge of these components could be gained through the generation of a Pareto-optimal set – a set of competitive members that are not dominated by other members when compared using evaluation objectives. This study integrates Pareto-optimality into the ensemble Kalman filter (EnKF) and the particle filter (PF). Comparisons are made between three methods: evolutionary data assimilation (EDA) and methods based on the integration of Pareto-optimality into the EnKF (ParetoEnKF) and into the PF (ParetoPF). The methods are applied to assimilate daily streamflow into the Sacramento Soil Moisture Accounting model in the Spencer Creek watershed in Canada. The updated members are applied to forecast streamflows for up to 10 days ahead, where forecasts for 1 day, 5 day and 10 day lead times are compared to observations. The results show that updated estimates are similar for all three methods. An evaluation of updated members for multi-step forecasting revealed that EDA had the highest forecast accuracy compared to ParetoEnKF and ParetoPF, which have similar accuracies.


Author(s):  
Nicolas Papadakis ◽  
Etienne Mémin ◽  
Anne Cuzol ◽  
Nicolas Gengembre

2016 ◽  
Vol 66 (8) ◽  
pp. 955-971 ◽  
Author(s):  
Stéphanie Ponsar ◽  
Patrick Luyten ◽  
Valérie Dulière

Icarus ◽  
2010 ◽  
Vol 209 (2) ◽  
pp. 470-481 ◽  
Author(s):  
Matthew J. Hoffman ◽  
Steven J. Greybush ◽  
R. John Wilson ◽  
Gyorgyi Gyarmati ◽  
Ross N. Hoffman ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. 1984-1999 ◽  
Author(s):  
Ahmadreza Zamani ◽  
Ahmadreza Azimian ◽  
Arnold Heemink ◽  
Dimitri Solomatine

2013 ◽  
Vol 5 (6) ◽  
pp. 3123-3139 ◽  
Author(s):  
Yasumasa Miyazawa ◽  
Hiroshi Murakami ◽  
Toru Miyama ◽  
Sergey Varlamov ◽  
Xinyu Guo ◽  
...  

2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


Sign in / Sign up

Export Citation Format

Share Document