Tool wear and chip morphology in high-speed milling of hardened Inconel 718 under dry and cryogenic CO2 conditions

Wear ◽  
2019 ◽  
Vol 426-427 ◽  
pp. 1683-1690 ◽  
Author(s):  
N.H.A. Halim ◽  
C.H.C. Haron ◽  
J.A. Ghani ◽  
M.F. Azhar
Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


Author(s):  
Jian-wei Ma ◽  
Zhen-yuan Jia ◽  
Guang-zhi He ◽  
Zhen Liu ◽  
Xiao-xuan Zhao ◽  
...  

High-speed machining provides an efficient approach for machining Inconel 718 with high quality and high efficiency. For high-speed milling of Inconel 718 curved surface, the geometrical characteristics are changing continuously leading to a sharp fluctuation of cutting force, which will aggravate the tool wear. As the wear mechanism of coated cutting tool is seriously affected by the cutting tool geometrical parameters, suitable geometrical parameters of cutting tool should be selected to avoid the cutting tool from being worn out very quickly. In this study, the influence of cutting tool geometrical parameters on tool wear in high-speed milling of Inconel 718 curved surface is investigated with coated cutting tool, and the cutting force in milling process is also analyzed. The results show that the cutting force variation can manifest the tool wear degree, and the failure type of coated cutting tool in plane milling and curved surface milling after the same cutting length is different. Furthermore, the cutting tool geometrical parameters seriously affect the tool wear and the tool life in high-speed milling of Inconel 718 curved surface. Concretely, the small rake angle has greater strength and has superiority, the relief angle increasing can enhance the tool life, and the tool life is decreased with the increasing of helix angle for the cutting tool, whose helix angle is larger than 30°. This study provides a theoretical basis for cutting tool wear mechanism and cutting tool geometrical parameter selection in high-speed milling of Inconel 718 curved surface, so as to guarantee the machining efficiency in high-speed milling of Inconel 718 curved surface.


Author(s):  
Jianwei Ma ◽  
Yuanyuan Gao ◽  
Zhenyuan Jia ◽  
Dening Song ◽  
Likun Si

High-speed milling, which provides an efficient approach for high-quality machining, is widely adopted for machining difficult-to-machine materials such as Inconel 718. For high-speed milling of Inconel 718 curved surface parts, the spindle speed which determines cutting speed directly is regarded as an important cutting parameter related to tool wear and machining efficiency. Meanwhile, because of the changing geometric features of curved surface, cutting force is changing all the time with the variation of geometric features, which influences not only tool wear but also machining quality significantly. In this study, the influence of spindle speed on coated tool wear in high-speed milling of Inconel 718 curved surface parts is studied through a series of experiments on considering tool life, cutting force, cutting force fluctuation, and machining efficiency. According to the experimental results, the appropriate spindle speed that can balance both the tool life and the machining efficiency is selected as 10,000 r/min for high-speed milling of Inconel 718 curved surface parts. In addition, the coated tool wear mechanism is investigated through scanning electron microscopy–energy dispersive x-ray spectroscopy analysis. The results show that at the beginning wear stage and the stable wear stage, the coated tool wear is mainly caused by mechanical wear. Then, with the increasing cutting temperature due to the blunt tool edge, the tool wear becomes compound wear which contains more than one wear form so as to cause a severe tool wear.


Wear ◽  
2017 ◽  
Vol 378-379 ◽  
pp. 58-67 ◽  
Author(s):  
Ali Çelik ◽  
Melike Sert Alağaç ◽  
Servet Turan ◽  
Alpagut Kara ◽  
Ferhat Kara

2021 ◽  
Author(s):  
Qimeng Liu ◽  
Jinkai Xu ◽  
Huadong Yu

Abstract Large-scale slender beam structures with weak stiffness are widely used in the aviation field. There will be a great deformation problem in machining because the overall stiffness of slender beam parts is lower. Firstly, the cutting mechanism and stability theory of the Ti6Al4V material are analyzed, and then the auxiliary support is carried out according to the machining characteristics of the slender beam structure. The feasibility of the deformation suppression measures for the slender beam is verified by experiments. The experimental analysis shows that on the basis of fulcrum auxiliary support, the filling of paraffin melt material is capable of increasing the damping of the whole system, improving the overall stiffness of the machining system, and inhibiting the chatter effect of machining. This method is effective to greatly improve the accuracy and efficiency during machining of slender beam parts. On the premise of the method of processing support with the combination of fulcrum and paraffin, if the tool wear is effectively controlled, the high precision machining of large-scale slender beams can be realized effectively, and the machining deformation of slender beams can be reduced. Although high speed milling has excellent machining effect on the machining accuracy of titanium alloy materials, severe tool wear is observed during high-speed milling of titanium alloy materials. Therefore, high-speed milling of titanium alloy slender beam is suitable to be carried out in the finishing process, which can effectively control tool wear and improve the machining accuracy of parts. Finally, the process verification of typical weak stiffness slender beam skeleton parts is carried out. Through the theoretical and technical support of the experimental scheme, the machining of large-scale slender beam structure parts with weak stiffness is realized.


2006 ◽  
Vol 315-316 ◽  
pp. 588-592 ◽  
Author(s):  
Wei Zhao ◽  
Ning He ◽  
Liang Li ◽  
Z.L. Man

High speed milling experiments using nitrogen-oil-mist as cutting medium were undertaken to investigate the characteristics of tool wear for Ti-6Al-4V Alloy, a kind of important and commonly used titanium alloy in the aerospace and automobile industries. Uncoated carbide tools have been applied in the experiments. The cutting speed was 300 m/min. The axial depth of cut and the radial depth of cut were kept constant at 5.0 mm and 1.0 mm, respectively. The feed per tooth was 0.1 mm/z. Optical and scanning electron microscopes have been utilized to determine the wear mechanisms of the cutting tools, and energy spectrum analysis has been carried out to measure the elements distribution at the worn areas. Meanwhile, comparisons were made to discuss the influence of different cutting media such as nitrogen-oil-mist and air-oil–mist upon the tool wear. The results of this investigation indicate that the tool life in nitrogen-oil-mist is significantly longer than that in air-oil-mist, and nitrogen-oil-mist is more suitable for high speed milling of Ti-6Al-4V alloy than air-oil-mist.


Sign in / Sign up

Export Citation Format

Share Document