Tool wear in dry gear hobbing of 20MnCr5 case-hardening steel, 42CrMo4 tempered steel and EN-GJS-700-2 cast iron

Wear ◽  
2021 ◽  
pp. 203737
Author(s):  
N. Troß ◽  
J. Brimmers ◽  
T. Bergs
Author(s):  
А. А. Veselovsky ◽  

The article is concerned with wear resistance increase of saw-tooth enclosed drives applying instead of iron gear wheels, made from cement steel quality, gear wheels from high-duty cast iron of HF 60 with thermodiffusion carbide layer. Elements- diffusants were chosen according to level of carbide forming and hardness of formed layersvanadium- for forming very hard, chrome-medium according to coating and manganese- for low layers according to coating hardness. Layers are formed on spur gears, which are reverse gear of light vehicle. Setting for research included draw gear- asynchronous electric drive, placed on lathe-bed with the help of which rotation of gear shift transmission with powered reverse gear was done. Transmission output shaft was pressed into chunk. Kinematick of disconnected machine provided necessary moment resistance. Through given number of cycles the box was taken down, gear set was removed and metal graphic research was carried out. Residual layer thickness and linear wear were diagnosed, on the basis of obtained experimental data we built characteristic curves of linear wear from number of stress cycles. For comparative evaluation in this type of research we carried out experiments on measurement of linear wear of case – hardening steel 20 ChGn after cementation and further quenching and research of hardened cast iron HF mark 60. It was found out that the highest quality wearing in this type of research vanadium layers have, slightly lower quality wear chromium plate have and on the 3rd place manganese layers. The worst quality wear we observed in steel 20 ChGN. On the basis of obtained –experimental data empirical regularities of wear rate of layers from their Brinnel hardness and diameter of obtained copy were determined.


Alloy Digest ◽  
1959 ◽  
Vol 8 (2) ◽  

Abstract AISI 4320 is a nickel-chromium-molybdenum case hardening steel having high toughness and shock resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-80. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1965 ◽  
Vol 14 (7) ◽  

Abstract AISI 8615 is a low-carbon, nickel-chromium-molybdenum alloy steel capable of producing high core strength and toughness. It is a case hardening steel recommended for heavy duty gears, cams, shafts, chains, fasteners, piston pins, etc. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-180. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1960 ◽  
Vol 9 (4) ◽  

Abstract AISI 3120 is a low-carbon, chromium-nickel case-hardening steel offering good toughness and shock resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-97. Producer or source: Alloy steel mills and foundries.


2021 ◽  
Vol 15 (2) ◽  
pp. 137-150
Author(s):  
Susanne Elisabeth Thürer ◽  
Anna Chugreeva ◽  
Norman Heimes ◽  
Johanna Uhe ◽  
Bernd-Arno Behrens ◽  
...  

AbstractThe current study presents a novel Tailored Forming process chain developed for the production of hybrid bearing bushings. In a first step, semi-finished products in the form of locally reinforced hollow profiles were produced using a new co-extrusion process. For this purpose, a modular tool concept was developed in which a steel tube made of a case-hardening steel, either C15 (AISI 1015) or 20MnCr5 (AISI 5120), is fed laterally into the tool. Inside the welding chamber, the steel tube is joined with the extruded aluminum alloy EN AW-6082. In the second step, sections from the compound profiles were formed into hybrid bearing bushings by die forging. In order to set the required forming temperatures for each material—aluminum and steel—simultaneously, a tailored heating strategy was developed, which enabled successful die forging of the hybrid workpiece to the desired bearing bushing geometry. Using either of the case-hardening steels in combination with aluminum, this novel process chain made it possible to produce intact hybrid bearing bushings, which showed both macroscopically and microscopically intimate material contact inside the compound zone.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 896
Author(s):  
Matthias Schmitt ◽  
Albin Gottwalt ◽  
Jakob Winkler ◽  
Thomas Tobie ◽  
Georg Schlick ◽  
...  

The carbon content of steel affects many of its essential properties, e.g., hardness and mechanical strength. In the powder bed fusion process of metals using a laser beam (PBF-LB/M), usually, pre-alloyed metal powder is solidified layer-by-layer using a laser beam to create parts. A reduction of the carbon content in steels is observed during this process. This study examines adding carbon particles to the metal powder and in situ alloying in the PBF-LB/M process as a countermeasure. Suitable carbon particles are selected and their effect on the particle size distribution and homogeneity of the mixtures is analysed. The workability in PBF-LB is then shown. This is followed by an evaluation of the resulting mechanical properties (hardness and mechanical strength) and microstructure in the as-built state and the state after heat treatment. Furthermore, potential use cases like multi-material or functionally graded parts are discussed.


Sign in / Sign up

Export Citation Format

Share Document