Letter to the Editor Regarding “The Diagnostic Properties of Intraoperative Ultrasound in Glioma Surgery and Factors Associated with Gross Total Tumor Resection”

2019 ◽  
Vol 125 ◽  
pp. 553-554
Author(s):  
Francesco Prada ◽  
Ignazio G. Vetrano ◽  
Massimiliano DelBene ◽  
Giovanni Mauri ◽  
Luca M. Sconfienza ◽  
...  
2018 ◽  
Vol 115 ◽  
pp. e129-e136 ◽  
Author(s):  
Bodil Karoline Ravn Munkvold ◽  
Asgeir Store Jakola ◽  
Ingerid Reinertsen ◽  
Lisa Millgård Sagberg ◽  
Geirmund Unsgård ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 202 ◽  
Author(s):  
Maria Pino ◽  
Alessia Imperato ◽  
Irene Musca ◽  
Rosario Maugeri ◽  
Giuseppe Giammalva ◽  
...  

Maximal safe resection represents the gold standard for surgery of malignant brain tumors. As regards gross-total resection, accurate localization and precise delineation of the tumor margins are required. Intraoperative diagnostic imaging (Intra-Operative Magnetic Resonance-IOMR, Intra-Operative Computed Tomography-IOCT, Intra-Operative Ultrasound-IOUS) and dyes (fluorescence) have become relevant in brain tumor surgery, allowing for a more radical and safer tumor resection. IOUS guidance for brain tumor surgery is accurate in distinguishing tumor from normal parenchyma, and it allows a real-time intraoperative visualization. We aim to evaluate the role of IOUS in gliomas surgery and to outline specific strategies to maximize its efficacy. We performed a literature research through the Pubmed database by selecting each article which was focused on the use of IOUS in brain tumor surgery, and in particular in glioma surgery, published in the last 15 years (from 2003 to 2018). We selected 39 papers concerning the use of IOUS in brain tumor surgery, including gliomas. IOUS exerts a notable attraction due to its low cost, minimal interruption of the operational flow, and lack of radiation exposure. Our literature review shows that increasing the use of ultrasound in brain tumors allows more radical resections, thus giving rise to increases in survival.


2021 ◽  
Vol 37 (3) ◽  
Author(s):  
Xin Li ◽  
Zhen-jie Liu ◽  
Liang Liang ◽  
Hai-qing Dong

Objective: To observe application values of intraoperative ultrasound combined with neuro electrophysiological detection in the spinal cord glioma surgery. Methods: Sixty patients with spinal cord glioma hospitalized in Baoding First Central Hospital from January 2016 to January 2018 were selected, randomly divided into two groups by the random number table method, with 30 cases of each group. PASS software was used to calculate the sample size. The control group was treated with traditional microsurgery, while the experimental group was treated with intraoperative ultrasound combined with neuro electrophysiological testing. The operation time, intraoperative blood loss, postoperative hospital stays, degree of tumor resection, clinical efficacy, recovery of neurological function, recovery of health status, quality of life score, and 2-year recurrence rate of the two groups of patients were observed and compared. Results: The operation time of the experimental group was longer than that of the control group, and the postoperative hospital stay was shorter than that of the control group. The complete tumor resection rate, complete remission rate and postoperative scale scores of the experimental group were significantly higher than those of the control group, while the recurrence rate within two years was significantly lower than that of the control group. The above differences were statistically significant (p<0.05). Conclusions: Intraoperative ultrasound combined with neuro-electrophysiological detection for spinal glioma has more adequate protection of nerve function, high clinical complete remission rate, more thorough tumor resection, and lower recurrence rate than traditional microsurgery, which is worthy of clinical application. doi: https://doi.org/10.12669/pjms.37.3.3638 How to cite this:Li X, Liu ZJ, Liang L, Dong HQ. Application evaluation of intraoperative ultrasound combined with neuro electrophysiological detection in the spinal cord glioma surgery. Pak J Med Sci. 2021;37(3):---------. doi: https://doi.org/10.12669/pjms.37.3.3638 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Vol 11 ◽  
Author(s):  
Benjamin Saß ◽  
Mirza Pojskic ◽  
Darko Zivkovic ◽  
Barbara Carl ◽  
Christopher Nimsky ◽  
...  

BackgroundIn glioma surgery, the patient’s outcome is dramatically influenced by the extent of resection and residual tumor volume. To facilitate safe resection, neuronavigational systems are routinely used. However, due to brain shift, accuracy decreases with the course of the surgery. Intraoperative ultrasound has proved to provide excellent live imaging, which may be integrated into the navigational procedure. Here we describe the visualization of vascular landmarks and their shift during tumor resection using intraoperative navigated 3D color Doppler ultrasound (3D iUS color Doppler).MethodsSix patients suffering from glial tumors located in the temporal lobe were included in this study. Intraoperative computed tomography was used for registration. Datasets of 3D iUS color Doppler were generated before dural opening and after tumor resection, and the vascular tree was segmented manually. In each dataset, one to four landmarks were identified, compared to the preoperative MRI, and the Euclidean distance was calculated.ResultsPre-resectional mean Euclidean distance of the marked points was 4.1 ± 1.3 mm (mean ± SD), ranging from 2.6 to 6.0 mm. Post-resectional mean Euclidean distance was 4.7. ± 1.0 mm, ranging from 2.9 to 6.0 mm.Conclusion3D iUS color Doppler allows estimation of brain shift intraoperatively, thus increasing patient safety. Future implementation of the reconstructed vessel tree into the navigational setup might allow navigational updating with further consecutive increasement of accuracy.


Author(s):  
Hernan Vergara-Burgos ◽  
Carmen Sierra-Ochoa ◽  
Ivan Lozada-Martínez ◽  
Luis Moscote-Salazar ◽  
Tariq Janjua

Neurosurgery ◽  
2011 ◽  
Vol 69 (4) ◽  
pp. 852-863 ◽  
Author(s):  
Daniela Kuhnt ◽  
Oliver Ganslandt ◽  
Sven-Martin Schlaffer ◽  
Michael Buchfelder ◽  
Christopher Nimsky

Abstract BACKGROUND: The beneficial role of the extent of resection (EOR) in glioma surgery in correlation to increased survival remains controversial. However, common literature favors maximum EOR with preservation of neurological function, which is shown to be associated with a significantly improved outcome. OBJECTIVE: In order to obtain a maximum EOR, it was examined whether high-field intraoperative magnetic resonance imaging (iMRI) combined with multimodal navigation contributes to a significantly improved EOR in glioma surgery. METHODS: Two hundred ninety-three glioma patients underwent craniotomy and tumor resection with the aid of intraoperative 1.5 T MRI and integrated multimodal navigation. In cases of remnant tumor, an update of navigation was performed with intraoperative images. Tumor volume was quantified pre- and intraoperatively by segmentation of T2 abnormality in low-grade and contrast enhancement in high-grade gliomas. RESULTS: In 25.9% of all cases examined, additional tumor mass was removed as a result of iMRI. This led to complete tumor resection in 20 cases, increasing the rate of gross-total removal from 31.7% to 38.6%. In 56 patients, additional but incomplete resection was performed because of the close location to eloquent brain areas. Volumetric analysis showed a significantly (P &lt; .01) reduced mean percentage of tumor volume following additional further resection after iMRI from 33.5% ± 25.1% to 14.7% ± 23.3% (World Health Organization [WHO] grade I, 32.8% ± 21.9% to 6.1% ± 18.8%; WHO grade II, 24.4% ± 25.1% to 10.8% ± 11.0%; WHO grade III, 35.1% ± 27.3% to 24.8% ± 26.3%; WHO grade IV, 34.2% ± 23.7% to 1.2% ± 16.2%). CONCLUSION: MRI in conjunction with multimodal navigation and an intraoperative updating procedure enlarges tumor-volume reduction in glioma surgery significantly without higher postoperative morbidity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi225-vi226
Author(s):  
Shota Tanaka ◽  
Yosuke Kitagawa ◽  
Mako Kamiya ◽  
Takenori Shimizu ◽  
Yasuteru Urano ◽  
...  

Abstract PURPOSE Fluorescence imaging is an important surgical adjunct in malignant glioma surgery. 5-aminolevulinic acid (5-ALA) has been proven effective for radical tumor resection and extended progression-free survival in a phase III randomized trial and therefore integrated into surgery for malignant glioma. Importantly, however, some limitations still exist in its use, which include false positivity and false negativity as well as inability of re-administration. In this study, we aimed to develop a novel, spray-type fluorescent probe using hydroxymethyl rhodamine green (HMRG) as a fluorescent scaffold. METHODS We have previously established a fluorescent probe library comprised of more than 320 kinds of HMRG probes. They have HMRG as a fluorescent scaffold with various types of dipeptides attached to it. Primary probe screening was performed using the homogenized tumor samples from patients with glioblastoma operated at our institution. Secondary screening followed using the selected probes and fresh tumor samples obtained from patients with glioblastoma operated from 2016 until 2018. Diced electrophoresis gel (DEG) assay, two-dimensional gel electrophoresis followed by a multi-well plate-based fluorometric assay, was performed to identify responsible enzymes for the selected probe. Further experiments with inhibitors, real-time PCR, immunohistochemistry, and western blotting were performed for confirmation. RESULTS Proline-arginine-HMRG (PR-HMRG) was selected as a candidate probe based upon the above two-step screenings. It achieved 79.4% accuracy in receiver operating characteristic curve analysis. Calpain-1 was found to be responsible to cleave PR-HMRG probe by DEG-proteome analysis. Calpain-1 protein was highly expressed in tumor tissues which reacted to PR-HMRG probe. CONCLUSIONS Our innovative screening method was able to find PR-HMRG as a novel fluorescent probe effective for rapid detection of glioblastoma. A preclinical study is planned to assess the efficacy and safety of the selected probe.


2011 ◽  
Vol 02 (01) ◽  
pp. 004-011 ◽  
Author(s):  
Aliasgar Moiyadi ◽  
Prakash Shetty

ABSTRACT Background: Localization and delineation of extent of lesions is critical for safe maximal resection of brain and spinal cord tumors. Frame-based and frameless stereotaxy and intraoperative MRI are costly and not freely available especially in economically constrained nations. Intraoperative ultrasound has been around for a while but has been relegated to the background. Lack of objective evidence for its usefulness and the perceived “user unfriendliness” of US are probably responsible for this. We recount our experience with this “forgotten” tool and propose an objective assessment score of its utility in an attempt to revive this practice. Materials and Methods: Seventy seven intraoperative ultrasound (IOUS) studies were carried out in patients with brain and spinal cord tumors. Seven parameters were identifi ed to measure the “utility” of the IOUS and a “utility score” was devised (minimum 0 and maximum 7). Individual parameter and overall scores were calculated for each case. Results: IOUS was found to be useful in many ways. The median overall score was 6 (mean score 5.65). There were no scores less than 4 with the majority demonstrating usefulness in 5 or more parameters (91%). The use of the IOUS signifi cantly infl uenced the performance of the surgery in these cases without signifi cantly prolonging surgery. Conclusions: The IOUS is a very useful tool in intraoperative localization and delineation of lesions and planning various stages of tumor resection. It is easy, convenient, reliable, widely available, and above all a cost-eff ective tool. It should be increasingly used by neurosurgeons in the developing world where costlier intraoperative localization and imaging is not available freely.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ji Shi ◽  
Ye Zhang ◽  
Bing Yao ◽  
Peixin Sun ◽  
Yuanyuan Hao ◽  
...  

Gliomas are the most invasive and fatal primary malignancy of the central nervous system that have poor prognosis, with maximal safe resection representing the gold standard for surgical treatment. To achieve gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of currently available equipment, developing a real-time image-guided resection technique that provides reliable functional and anatomical information during intraoperative settings is imperative. Nowadays, the application of intraoperative ultrasound (IOUS) has been shown to improve resection rates and maximize brain function preservation. IOUS, which presents an attractive option due to its low cost, minimal operational flow interruptions, and lack of radiation exposure, is able to provide real-time localization and accurate tumor size and shape descriptions while helping distinguish residual tumors and addressing brain shift. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound, three-dimensional ultrasound, navigable ultrasound, ultrasound elastography, and functional ultrasound, could help to achieve GTR during glioma surgery. The current review describes current advancements in ultrasound technology and evaluates the role and limitation of IOUS in glioma surgery.


Sign in / Sign up

Export Citation Format

Share Document